
FORGE: Force-Guided Exploration for Robust
Contact-Rich Manipulation under Uncertainty

Michael Noseworthy1 Bingjie Tang2 Bowen Wen3 Ankur Handa3 Chad Kessens4

Nicholas Roy1 Dieter Fox3 Fabio Ramos3 Yashraj Narang3 Iretiayo Akinola3

Abstract: We present FORGE, a method that enables sim-to-real transfer of
contact-rich manipulation policies in the presence of significant pose uncertainty.
FORGE combines a force threshold mechanism with a dynamics randomization
scheme during policy learning in simulation to enable the robust transfer of the
learned policies to the real robot. At deployment, FORGE policies adaptively per-
form contact-rich tasks while respecting the specified force threshold, regardless
of the controller gains. Additionally, FORGE autonomously predicts a termina-
tion action once the task has succeeded. We demonstrate that FORGE can be used
to learn a variety of robust contact-rich policies (nut-threading, insertion, and gear
meshing), enabling multi-stage assembly of a planetary gear system.Project web-
site: https://noseworm.github.io/forge/

Keywords: Assembly, Sim-to-Real, Force Sensing

1 Introduction

We are interested in sim-to-real techniques for learning assembly primitives (e.g., low-clearance
insertion or nut-threading). Over the past decade, work in simulation and sim-to-real has led to
advances in challenging areas such as dexterous manipulation and legged locomotion [1, 2, 3, 4].
However, similar results have only recently been achieved for assembly, which requires efficient and
accurate simulation of both the robot and the detailed, low-clearance parts [5, 6, 7, 8, 9, 10].

Even with these advances, successfully deploying sim-to-real policies for assembly remains chal-
lenging. Previous approaches typically consider small amounts of perceptual noise. This assumption
aligns with industrial robot workcells where uncertainty is typically engineered away. Strategies to
deal with uncertainty include mechanical design of fixtures and adapters, extensive calibration pro-
cesses, and the use of high-precision sensing. We aim to develop control methods that are robust to
higher levels of pose estimation error, which is unavoidable in less structured environments.

When there is pose uncertainty, behaviours that search for and rely on contact can be used to ensure
success [11, 12]. However, the required contact between the parts can lead to undesirable outcomes
if the force is too high. Parts can slip or become damaged, making the task difficult or impossible to
complete. Heuristic approaches, such as spiral search [11, 13] are task-specific and can be inefficient.
RL offers a general paradigm for developing more flexible search behaviours. However, the sim-
to-real gap makes it difficult to transfer policies learned in simulation to the real world. Even if the
simulator has an accurate robot model (itself a time-consuming calibration procedure), it is difficult
to know a priori the material and inertial properties of the parts the robot will interact with.

In this work, we propose FORGE: a framework for developing sim-to-real policies that safely and
efficiently perform assembly tasks in the presence of significant pose uncertainty. FORGE trains
policies in simulation that are robust to a wide range of contact interactions. Additionally, policies
are trained without precise knowledge of part poses, leading to emergent search behaviours.

Correspondence: mnosew@mit.edu
1MIT 2USC 3NVIDIA 4DEVCOM Army Research Laboratory (ARL)

https://noseworm.github.io/forge/

Figure 1: FORGE uses force feedback
to learn search behaviours for contact-rich
tasks with pose estimation uncertainty. It
combines dynamics randomization, a force
threshold, and early termination for robust
sim-to-real transfer. The resulting policies
are safer (bottom) compared to aggressive
baseline policies that cause parts to slip (top).

FORGE has two complementary components to en-
sure policies are robust to contact. First, we pro-
pose to condition policies on a force threshold that
should not be exceeded during task execution. Sec-
ond, policies are trained to maintain this threshold
under a wide range of dynamics randomizations (we
randomize robot, controller, and part properties).

As assembly policies become more performant, we
emphasize the importance of reporting metrics be-
yond success rate, such as mean force or time to
success. Standard practice in sim-to-real assembly
is to execute policies for a fixed duration [7]. How-
ever, due to task variation, this will often lead to pre-
mature termination or leave a robot “waiting” after
the task is finished. Instead, the policy can deter-
mine when to terminate. This is itself a difficult task
that can benefit from contact (e.g., a successfully in-
serted peg cannot move laterally). FORGE proposes
a method for early termination that expands the ac-
tion space so that the policy learns to predict task
success. We show that early termination, trained in
simulation, robustly transfers to the real world.

In summary, our contributions are: (1) A method to specify maximum allowable contact-force
during policy execution. This results in policies that exhibit safe search behaviour even with sig-
nificant levels of pose estimation error (up to 5mm). (2) A dynamics randomization scheme that
enables robust sim-to-real transfer, and minimizes the need to tune controller gains. (3) A method
for early termination prediction that allows efficient policy execution. (4) A demonstration of
multi-part assembly of a planetary gearbox requiring a diverse set of skills, including the challeng-
ing task of fastening nuts and bolts. Results are shown over > 500 real-world trials.

2 RL for Contact-Rich Assembly

We are interested in tasks with tight tolerances and detailed geometry. Each task involves mating a
part held in the gripper to a part fixed to the workspace. We consider all three tasks from Factory
[5] and demonstrate the first sim-to-real transfer for threading a small M16 nut (see Fig. 2).

Peg Insertion: A small round peg with 8mm diameter needs to be inserted into a corresponding
socket with 0.5mm diametrical clearance. There is position uncertainty such that a successful search
behaviour requires lateral exploration.

Gear Meshing: Gears need to be inserted onto pegs with 0.5mm clearance. Other gears are present
and the teeth of adjacent gears must be aligned for successful meshing. In addition to lateral explo-
ration, rotational exploration may be necessary to mesh the teeth.

Nut Threading: Instead of fully lowering a nut onto a bolt as in Factory, we define the nut threading
task as successfully threading the nut such that it cannot be lifted by a vertical motion (we find
lowering by a quarter-thread is sufficient). Because our robot has joint limits, and to prevent the need
to regrasp, we assume the nut and bolt are initially oriented1 such that success can be achieved with
a single revolution of the wrist joint. We consider nuts with a relatively small size (M16) compared
to previous sim-to-real work (M48) [14]. A successful behaviour will resolve lateral uncertainty and
place the nut on the bolt before rotating the wrist (otherwise the threads may not catch).

1We leave the more challenging scenario involving completely unobserved thread orientation to future work.

2

Figure 2: FORGE is evaluated on three tasks proposed in Factory [5]: Peg Insertion, Gear Meshing,
and Nut Threading. Each task is trained in simulation and transferred directly to the real robot.

2.1 POMDP Formulation

We formulate our problem as a Partially Observable Markov Decision Process (POMDP) [15, 16]
to reflect the partial observability of most contact-rich manipulation setups. The goal is to learn a
parameterized policy, πθ(at|o1, . . . , ot), that maximizes the expected return:

J(πθ) = Eτ∼p(τ |πθ,Ψ)[Σ
∞
t=0γ

trt] (1)

where τ = (s0, a0, o0, s1, a1, o1, . . .) is the trajectory of states, actions, and observations resulting
from the robot following policy πθ.

States (S): A state, st ∈ S consists of the pose and velocities of the end-effector (EE), fixed part, and
held part: pee, pfixed, pheld ∈ SE(3) and vee, vheld ∈ R6.We also include the contact force experi-
enced by the end-effector, F ee ∈ R3, and time-invariant information about the dynamics properties
of the robot, controller, and parts (e.g., mass or joint-friction): Ψ = (ψrobot, ψcontrol, ψparts).

Observations (Ω): It is difficult to accurately estimate the full state of small parts. Instead, policies
use the following observations: Noisy EE pose and velocity (p̂ee ∈ SE(3), v̂ee ∈ R6), estimated
contact force (F̂ ee ∈ R3), noisy estimate of the fixed part’s pose (p̂fixed ∈ SE(3)). We do not
include pose or velocity of the held part because it can move in the gripper and be difficult to track
without tactile sensing. Likewise, we do not observe Ψ, but include the previous action, at−1, to
help infer unknown dynamics.

Actions (A): Control targets for a task-space impedance controller [17, 7]. As in previous work
[5, 7], we assume all parts are in an upright orientation. Thus it is sufficient for the policy to only
have control authority over the (x, y, z, yaw)-dimensions: at ∈ A = R4.

Transition Function (T): T is parameterized by the dynamics parameters, Ψ: TΨ : S × A → S
and specified using a simulator (in our case IsaacGym [18]) with the corresponding set of simulation
parameters, Ψsim. The sim-to-real gap comes from the mismatch between Ψsim and Ψreal.

Observation Function (O): The observation function generates noisy observations from state: O :
S × A → Ω. The position of the fixed part is assumed to have up to 5mm error. Independent
Gaussian noise is added to each of the other observations at every timestep (see Appendix A).

Reward (R): The reward function, R : S × A → R, uses a keypoint formulation as its main
component: Rkp(p

fixed, pheldt). The target keypoints, ktarg, represent the desired position of the
held part, while kheldt represent its current position. We modify the keypoint reward from previous
work [5, 19] to account for small, threaded geometries (see Appendix B for more details).

3 FORGE: Robust Search under Uncertainty

FORGE uses on-policy RL to learn exploratory behaviours in simulation. A force threshold (Section
3.1) and dynamics randomization (Section 3.2) are introduced to achieve robust search behaviours.
FORGE also introduces an early termination procedure (Section 3.3) for efficient execution.

3

3.1 Force Threshold

During policy execution, excessive force can cause parts to slip or become damaged (e.g., electronic
components with fragile pins). Although it may be possible to recover from small amounts of slip
with the right sensors (e.g., wrist camera or tactile), we prefer to avoid these scenarios.

To develop safe policies, we propose to condition the policy on a force threshold, Fth: π(a|o, Fth).
During training, the policy is penalized if the contact force, F ee

t , experienced by the arm exceeds
the threshold. Concretely, we add an additional term to the reward function:

Rcontact pen(F
ee
t) = −β ∗max(0, ||F ee

t || − Fth). (2)

In simulation, the true contact force can be measured. Note that this penalty can be used during
training whether the policy has access to the force observation or not.

3.2 Dynamics Randomization

To successfully deploy policies trained in simulation, it is important that the trajectory distribution
experienced during training is similar to what it would be when deployed: p(τ real|πθ,Ψreal) ≈
p(τsim|πθ,Ψsim). The difference between these distributions is usually referred to as the sim-to-
real gap. To gain insight into why minimizing the gap is important, specifically for contact-rich
tasks, we can look more deeply into how trajectories are sampled:

τ ∼ p(τ |π,Ψ) =p(s0)

T∏
t=1

[
π(at|o1:t)p(ot|st, at−1,Ψ)p(st|st−1, at−1,Ψ)

]
. (3)

From this equation, we see the dynamics parameters can impact both the next-state and observation
distributions. For the same action, different dynamics parameters can lead to parts being in different
locations. Further, similar actions may lead to different observed contact forces.

The sim-to-real gap is usually handled by (1) system identification (Sys-ID) [20] or (2) dynamics
randomization (DR) [21, 10]. The goal of Sys-ID is to tune Ψsim to be close to Ψreal. This itself is a
complicated tuning procedure that may need to be redone for every new set of parts. Instead, we fol-
low the DR approach which learns policies that are robust to a wide range of dynamics parameters.
Concretely, we optimize a version of Eq. 1 where:

τ ∼ pDR(τ |πθ) = ∫ p(τ |πθ,Ψ)p(Ψ)dΨ. (4)

The integral is approximated with samples from a randomization distribution (see Appendix A).

Controller Randomization: The controller has a large impact on what force will be experienced.
This work uses impedance-control where applied forces are computed as:

ptargt = clip(combine(at, p
fixed), λ) F targ = kp(p

targ
t − peet)− kdv

ee
t . (5)

First, the policy outputs a relative-pose, at, which is applied to the fixed part’s pose to get an absolute
target pose, ptargt . This pose is clipped by an action scale, λ, to ensure that the target is not too
far from the EE’s current pose. As in previous work, we use critically damped gains to ensure
stable controllers: kd = 2

√
kp [10, 22, 23]. The controller thus depends on two parameters which

govern how much force can be commanded: λ × kp. We randomize both quantities so that the
range of maximum commandable forces is in [6.4, 20.0]N . Note that the control parameters are not
included in the observations, so the policy must adjust its behavior based on force measurements.
This reduces the policy’s dependence on a particular controller implementation. Controller tuning
[7] or optimization [23] can be costly and complex. Randomization has the benefit that the policy is
robust to a range of control parameters, greatly simplifying deployment.

Part Friction Randomization: As parts slide against each other, the material friction determines
how much lateral force the sensor will experience. To ensure policies can work across a range of
materials, we randomize part friction.

4

8mm Peg Medium Gear M16 Nut
Success Rate ↑ Duration (s) ↓ Success Rate ↑ Duration (s) ↓ Success Rate ↑ Duration (s) ↓

FORGE 0.84 (0.05) 5.01 (0.17) 0.98 (0.02) 6.34 (0.42) 0.44 (0.07) 24.50 (1.35)
FORGE (No Force) 0.82 (0.06) 7.30 (0.42) 0.93 (0.04) 9.02 (0.79) 0.69 (0.07) 13.16 (0.66)

No FP (400kp) 0.64 (0.07) 6.06 (0.40) 0.82 (0.06) 6.44 (0.23) N/A N/A
No FP (600kp) 0.71 (0.07) 5.28 (0.35) 0.73 (0.07) 6.99 (0.46) N/A N/A

Baseline 0.64 (0.07) 5.09 (0.30) 0.69 (0.07) 7.57 (0.50) 0.20 (0.06) 27.89 (2.22)

Table 1: Baseline Comparison FORGE (with and without force observations) is compared to base-
lines that do not include robust sim-to-real components. It is additionally compared to ablations that
do not use an excessive-force penalty. Evaluations are performed over a total of 585 trials on the
real robot (45 per row). Standard errors are included in parentheses.

Robot Dynamics Randomization: Due to phenomena such as joint friction, the applied force
may be smaller than the commanded force. We implement a simple way to account for this: in-
ducing a randomized dead-zone in simulation. Each episode, a dead-zone is selected for each
dimension, FDZ

i , where commanded forces below this value are clamped to zero: |F applied
i | =

max(0, |F targ
i | − FDZ

i). This enables the policy to increase its target which can help apply more
force when needed or reduce steady-state error.

These randomizations lead to a policy that is robust to a wide range of dynamics parameters. Com-
bined with the force threshold, the policy can modulate its actions to achieve safe interaction. For
example, with higher gains, the policy will output smaller actions to limit the contact force.

3.3 Early Termination

Ideally, we want the policy to terminate as soon as the task has succeeded and no sooner. Although
success is clearly defined in simulation where we have access to the positions of each part, it is
difficult to reliably predict success in the real world [24]. Consider the nut-threading task, where the
distance between a successfully threaded nut and a loose nut may be as small as a millimeter.

We propose to train a success predictor which can robustly transfer from sim-to-real and be used to
make early termination decisions. Concretely, we share the weights of the policy network with the
success predictor by expanding the action space of the policy to include an early termination action:
aET
t ∈ [0, 1]. To train the policy to output the correct action, we include an early termination reward,
RET

t , which penalizes incorrect success predictions: RET
t (at, yt) = −|aET

t − yt|, where yt is the
true success label at time t. During training, episodes are always executed for the maximum length.

At deployment time, a confidence threshold, pterm, can be used to terminate the episode as soon as
the policy believes it has succeeded: aET

t > pterm. This allows us to behave efficiently, a desirable
property for industrial applications where it is important to reduce cycle times.

4 Results and Discussion

This section focuses on evaluating sim-to-real transfer. We trained all our policies in IssacGym
and deploy them on a real Franka Panda robot. Additional details on the setup are in Appendix D.
Additional analysis on the proposed early-termination procedure is in Appendix E.

4.1 Baseline Comparisons

We first compare FORGE to a baseline method that does not include any FORGE components;
however, it was trained with the early termination procedure so meaningful episode durations could
be reported. We also considered a version of FORGE that does not use force observations. The
questions we seek to answer are: (Q1) Does FORGE lead to more robust sim-to-real transfer?
(Q2) Does FORGE lead to policies with more desirable behavioural properties?

Each reported metric represents 45 trials spread across 5 workspace locations for the fixed part, and
3 pose-estimation error levels ranging from 0 − 5mm (see Fig. 3). Similar randomization ranges

5

Figure 3: Noise Analysis [Left]: For each task, we visualize what the different pose estimation
errors look like overlaid on the fixed part. [Right]: Performance broken down by level of pose
error. Each subplot is a planar representation of the error levels where each ring corresponds to low
(0-1mm), medium (1-2.5mm), and high (2.5-5mm) error. Success rate, stated in black text, is also
represented by the shade of the corresponding ring. Dots represent x-y noise samples for successful
(green) and failed (red) trials. FORGE results in good performance across tasks even with high error.

were used as in simulation except for the in-hand part randomization where the part was placed
centrally in the gripper. Results are reported in Table 1.

One conclusion for Q1 is that FORGE outperformed the Baseline method for all tasks whether
force is included or excluded from the observation space. This suggests that the primary benefits of
FORGE come from the dynamics randomization and excessive-force penalty. For FORGE, compar-
ison to the policy without force observation shows that although using force sensing was useful for
the easier insertion and gear meshing tasks, it harmed performance for the nut-threading task. We
hypothesize that this is because nut-threading policies rely more on force observations in simulation
and would therefore be more sensitive to any sim-to-real gap for this observation modality.

We include the analysis for Q2 in Appendix E which shows that FORGE used less force than the
baseline and had minor improvements in trial duration.

4.2 Noise Analysis

We next aim to answer (Q3): How is policy performance, in terms of success rate, affected by
pose-estimation error? We use the same trials from the previous section, but show a breakdown
of the results across different error levels. During each trial, artificial perception error was added to
the fixed part’s pose.A third of the trials fell in each of the three considered error levels (see Fig.
3): Low (0-1mm), Medium (1-2.5mm), and High (2.5-5mm). We considered 3D position error by
sampling a perturbation vector with a radius uniformly sampled in the desired error range and a
direction uniformly sampled from the unit-sphere.

Figure 3 visualizes the performance of the baseline policy vs. FORGE at different noise levels. Each
subplot is a 2D representation of how much x-y error there was for each trial (z-dimension error not
visualized). Each point corresponds to either a successful (green) or unsuccessful (red) trial. The
color of the ring represents the success rate at the corresponding error levels (increasing outwards).
For the M16 Nut task, we include results for the No Force ablation as this was the most robust policy
that used dynamics randomization and a force threshold.

FORGE achieved high success rates (> 0.8) for all tasks at low and medium error levels, even
for the M16 nut. Although performance degraded with error > 2.5mm, FORGE still significantly
outperformed the baseline. With high error, the effects of contact are more pronounced because the
robot may need to search longer before the task is complete.

6

4.3 Force Analysis

Figure 4: Gains Analysis (90 trials, 8mm Peg) With
force sensing (+Force), FORGE can achieve robust
success rates (bottom) across varying controller gains
at deployment time. Even with different gains, force
sensing allows the policy to modulate its actions to
achieve low contact forces (top).

Next, we investigate how FORGE limits
forceful interactions. (Q4) Can FORGE
limit the applied force without extensive
controller tuning? (Q5) How important
is the excessive-force penalty for safe in-
teractions?

Gains Robustness (Q4): To measure how
robust FORGE is to controller gains, we
performed an additional experiment where
we varied the gains at deployment time
and measured success rate. We compared
FORGE and the No Force ablation to gain
insight into how important force sensing is
to limiting applied forces. The experiment
was carried out for the 8mm peg task at
a single workspace location, with medium
pose estimation error and limited initial-state randomization. We considered 5 proportional gain
levels across the randomization range (corresponding to an 8N range in the maximum force the
controller could apply) and each condition was evaluated 9 times (3 runs per checkpoint).

In Fig. 4 (bottom), we see that FORGE achieves high success rates across a wide range of controller
gains. However, performance is less consistent without force observations. In Fig. 4 (top), we use
a box plot to show the spread of Fmean across the 9 trials of each condition. The dotted line shows
the deployment force-threshold: Fth = 7.5N . We see that when the force observation was included,
contact force was consistently low across gains. However, without force observations, the spread of
forces across episodes was high, often exceeding the threshold at higher gains. This highlights the
importance of force sensing to enable the policy to effectively modulate the contact force.

We answer Q5 in Appendix E which shows that policies without the excessive-force penalty led to
higher contact forces and lower success rates.

4.4 Multi-Stage Assembly

Figure 5: FORGE policies enable a robot to complete
long-horizon tasks such as assembling a planetary gear-
box (from initial state [left] to goal state [right]).

To culminate this work, we show that
FORGE enables the multi-stage assembly
of a planetary gearbox using a simple per-
ception system (see Fig. 5 for the initial
and final states). We assume the assem-
bly sequence is known a priori and train
FORGE policies for Small Gear, Large
Gear, and M16 Nut tasks. We additionally
introduce a new Ring Insertion task, which
must also be robust to orientation estima-
tion noise such that the three bolts align with the holes in the outer ring. Successfully assembling
the planetary gearbox requires executing 8 contact-rich primitives.

We ran 5 trials resulting in the following success rates: Ring Insertion (5/5), Small Gear (15/15),
Large Gear (3/5), M16 Nut (15/15). Early terminations saved on average 65s in a single trial
compared to executing policies for a fixed duration. Overall, the complete assembly succeeded in
3/5 trials where the failures correspond to the large gear insertion (which has to align the teeth of
three already inserted small gears). Please see the accompanying video for a demonstration of the
multi-stage assembly and Appendix C for more experimental details.

7

5 Related Work

Assembly tasks typically involve mating parts with tight clearances and detailed geometries [25, 26].
Various approaches have been proposed to handle pose uncertainty in such tasks. Mechanically,
remote centers of compliance [27] or chamfers can mitigate small misalignments. Compliant control
[28] and strategies such as spiral search [11, 29] have also be used for insertion. These strategies
typically consider low noise levels and are task-specific.

Real World Reinforcement Learning Learning on the robot side-steps the sim-to-real gap by using
data (and contact-interactions) from the same distribution expected at deployment. These works
typically address problem of data efficiency by leveraging demonstrations [30, 31, 32, 33, 34] or
using model-based approaches [35, 36, 37, 38]. To ensure excessive forces are not exceeded during
training, these papers typically use control methods designed to be safe [34, 39, 40].

Sim-to-Real Transfer: Learning directly in simulation is often preferable for robot safety, increased
task variability, and access to privileged state. With advancements in RL and parallelizable simula-
tion [41, 42, 43, 18], there has been much interest in sim-to-real transfer for complex control prob-
lems. Of note include legged locomotion [4, 44, 45, 46] and in-hand manipulation [19, 1, 2]. Recent
advances in contact-rich simulation has enabled efficient simulation of assembly tasks [47, 48, 5, 6].

Although system identification is a principled approach to minimize the sim-to-real gap [20], it
is often time-consuming and difficult to apply to contact-rich tasks [49, 50]. Instead, dynamics
randomization randomizes parameters such as part friction/stiffness [10, 21, 22, 51, 52], controller
gains [12, 21], or F/T observation scale [12, 53]. Even with randomization, excessive forces can
occur when deployed. An expert can tune the controller gains at deployment or choose an action-
space that is safe by design [7, 54, 55]. Gains can also be adapted online via optimization [23] or an
explicit gain-tuning model [53].

Similar to FORGE, other works have proposed to use a force-threshold [10, 17, 52]. These works
have a fixed threshold during training which is often very large to primarily prevent damage (e.g.,
40N). However, especially with small parts, slip can occur with much lower contact forces. Most
similar to FORGE, [10] introduces a method to specify the desired interaction force at deployment.

Most prior works focus on insertion-style tasks. We show how the combined application of a force-
threshold and dynamics randomization can lead to robust sim-to-real transfer for a range of tasks,
including the complicated nut-threading task. Prior work on sim-to-real for nut-threading [14] fo-
cused on large parts (M48 nuts) that were fixed to the gripper. In addition, we show these techniques
are applicable for sim-to-real transfer of early termination procedures.

Early-Termination: Previous sim-to-real approaches execute policies for a fixed duration [7]. In-
stead, we would like to terminate once success is achieved. For some tasks, success can be manually
specified from sensor data [56, 57]. For others, a classifier can be learned from visual data [58, 59].
However, for contact-rich tasks, visual and proprioceptive data alone may be insufficient to deter-
mine success [60]. In such cases, the robot can execute actions to verify success [61]. Previous
work learns a separate policy to check success after task execution [24]. Instead, we jointly trained
a policy to predict success during task execution.

6 Conclusion

In conclusion, we present FORGE, a method to train sim-to-real policies for robust execution with
pose estimation uncertainty. FORGE uses a force threshold and dynamics randomization to learn
safe exploration behaviours, enabling successful policy execution with up to 5mm of position esti-
mation error. In addition, FORGE can predict early termination, allowing efficient policy execution.
In future work, we plan to investigate torque sensing to help develop more efficient search strate-
gies. We also believe research in real-to-sim will help automatically tune simulation models for
robust transfer in complicated tasks such as nut-threading.

8

Acknowledgments

We would like to thank the Seattle Robotics Lab and the Robust Robotics Group for valuable feed-
back and discussion.

References
[1] I. Akkaya et al. Solving rubik’s cube with a robot hand. arXiv:1910.07113, 2019.

[2] A. Handa et al. DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to Reality.
In ICRA. IEEE, 2023.

[3] J. Tan et al. Sim-to-Real: Learning Agile Locomotion For Quadruped Robots. In RSS, 2018.

[4] J. Hwangbo et al. Learning agile and dynamic motor skills for legged robots. Science Robotics,
2019.

[5] Y. Narang et al. Factory: Fast Contact for Robotic Assembly. In RSS, 2022.

[6] J. Yoon, M. Lee, D. Son, and D. Lee. Fast and Accurate Data-Driven Simulation Framework
for Contact-Intensive Tight-Tolerance Robotic Assembly Tasks. arXiv:2202.13098, 2022.

[7] B. Tang et al. IndustReal: Transferring Contact-Rich Assembly Tasks from Simulation to
Reality. In RSS, 2023.

[8] G. Schoettler and et al. Meta-reinforcement learning for robotic industrial insertion tasks. In
IROS. IEEE, 2020.

[9] S. Kozlovsky, E. Newman, and M. Zacksenhouse. Reinforcement Learning of Impedance
Policies for Peg-in-Hole Tasks: Role of Asymmetric Matrices. IEEE RA-L, 2022.

[10] C. Beltran-Hernandez, D. Petit, I. Ramirez-Alpizar, and K. Harada. Variable compliance con-
trol for robotic peg-in-hole assembly: A deep-reinforcement-learning approach. Applied Sci-
ences, 2020.

[11] S. Chhatpar and M. Branicky. Search strategies for peg-in-hole assemblies with position un-
certainty. In IROS. IEEE, 2001.

[12] S. Jin, X. Zhu, C. Wang, and M. Tomizuka. Contact Pose Identification for Peg-in-Hole As-
sembly under Uncertainties. In ACC. IEEE, 2021.

[13] K. Van Wyk, M. Culleton, J. Falco, and K. Kelly. Comparative peg-in-hole testing of a force-
based manipulation controlled robotic hand. IEEE T-RO, 2018.

[14] D. Son, H. Yang, and D. Lee. Sim-to-Real Transfer of Bolting Tasks with Tight Tolerance. In
IROS. IEEE, 2020.

[15] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 1998.

[16] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei. TRANSIC: Sim-to-Real Policy Transfer
by Learning from Online Correction. arXiv:2405.10315, 2024.

[17] R. Martı́n-Martı́n, M. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space: An action space for reinforcement learning. In IROS. IEEE,
2019.

[18] V. Makoviychuk et al. Isaac gym: High performance gpu-based physics simulation for robot
learning. arXiv:2108.10470, 2021.

9

https://arxiv.org/pdf/1910.07113
https://ieeexplore.ieee.org/document/10160216
https://www.roboticsproceedings.org/rss14/p10.html
https://www.science.org/doi/10.1126/scirobotics.aau5872
https://www.roboticsproceedings.org/rss18/p035.html
https://arxiv.org/abs/2202.13098
https://arxiv.org/abs/2202.13098
https://roboticsconference.org/2023/program/papers/039/
https://roboticsconference.org/2023/program/papers/039/
https://ieeexplore.ieee.org/document/9340848
https://ieeexplore.ieee.org/document/9830834
https://ieeexplore.ieee.org/document/9830834
https://www.mdpi.com/2076-3417/10/19/6923
https://www.mdpi.com/2076-3417/10/19/6923
https://ieeexplore.ieee.org/document/977187
https://ieeexplore.ieee.org/document/977187
https://ieeexplore.ieee.org/document/9482981
https://ieeexplore.ieee.org/document/9482981
https://ieeexplore.ieee.org/document/8294275
https://ieeexplore.ieee.org/document/8294275
https://ieeexplore.ieee.org/document/9341644
https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf
https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf
https://transic-robot.github.io/
https://transic-robot.github.io/
https://ieeexplore.ieee.org/document/8968201
https://ieeexplore.ieee.org/document/8968201
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470

[19] A. Allshire et al. Transferring dexterous manipulation from gpu simulation to a remote real-
world trifinger. In IROS. IEEE, 2022.

[20] L. Ljung. System identification. In Signal analysis and prediction, pages 163–173. Springer,
1998.

[21] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-Real Transfer of Robotic
Control with Dynamics Randomization. In ICRA. IEEE, 2018.

[22] O. Spector and M. Zacksenhouse. Learning Contact-Rich Assembly Skills Using Residual
Admittance Policy. In IROS. IEEE, 2021.

[23] X. Zhang, C. Wang, L. Sun, Z. Wu, X. Zhu, and M. Tomizuka. Efficient Sim-to-real Transfer
of Contact-Rich Manipulation Skills with Online Admittance Residual Learning. In CORL,
2023.

[24] K. Huang, E. Hu, and D. Jayaraman. Training Robots to Evaluate Robots: Example-Based
Interactive Reward Functions for Policy Learning. In CORL, 2022.

[25] J. Xu, Z. Hou, Z. Liu, and H. Qiao. Compare contact model-based control and contact model-
free learning. arXiv:1904.05240, 2019.

[26] Z. Jia, A. Bhatia, R. Aronson, D. Bourne, and M. Mason. A survey of automated threaded
fastening. IEEE T-ASE, 2018.

[27] S. H. Drake. Using compliance in lieu of sensory feedback for automatic assembly. PhD thesis,
MIT, 1978.

[28] T. Lozano-Perez, M. Mason, and R. Taylor. Automatic synthesis of fine-motion strategies for
robots. IJRR, 1984.

[29] W. Newman, Y. Zhao, and Y. Pao. Interpretation of force and moment signals for compliant
peg-in-hole assembly. In ICRA. IEEE, 2001.

[30] F. Abu-Dakka, L. Rozo, and D. Caldwell. Force-based learning of variable impedance skills
for robotic manipulation. In Humanoids. IEEE, 2018.

[31] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal, and S. Ramamoorthy. Residual Learn-
ing From Demonstration: Adapting DMPs for Contact-Rich Manipulation. IEEE RA-L, 2022.

[32] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye, S. Schaal, and
J. Scholz. Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning
and Demonstrations: A Large-Scale Study. In RSS, 2021.

[33] M. Vecerik, O. Sushkov, D. Barker, T. Rothörl, T. Hester, and J. Scholz. A Practical Approach
to Insertion with Variable Socket Position Using Deep Reinforcement Learning. In ICRA.
IEEE, 2019.

[34] J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and
S. Levine. SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning.
arXiv:2401.16013, 2024.

[35] J. Luo et al. Reinforcement Learning on Variable Impedance Controller for High-Precision
Robotic Assembly. In ICRA. IEEE, 2019.

[36] Y. Fan, J. Luo, and M. Tomizuka. A Learning Framework for High Precision Industrial As-
sembly. In ICRA. IEEE, 2019.

[37] M. A. Lee, C. Florensa, J. Tremblay, N. Ratliff, A. Garg, F. Ramos, and D. Fox. Guided
Uncertainty-Aware Policy Optimization: Combining Learning and Model-Based Strategies for
Sample-Efficient Policy Learning. In ICRA. IEEE, 2020.

10

https://ieeexplore.ieee.org/document/9981458
https://ieeexplore.ieee.org/document/9981458
https://link.springer.com/chapter/10.1007/978-1-4612-1768-8_11
https://ieeexplore.ieee.org/document/8460528
https://ieeexplore.ieee.org/document/8460528
https://ieeexplore.ieee.org/document/9636547
https://ieeexplore.ieee.org/document/9636547
https://proceedings.mlr.press/v229/zhang23e.html
https://proceedings.mlr.press/v229/zhang23e.html
https://proceedings.mlr.press/v205/huang23a.html
https://proceedings.mlr.press/v205/huang23a.html
https://arxiv.org/abs/1904.05240
https://arxiv.org/abs/1904.05240
https://ieeexplore.ieee.org/document/8392410
https://ieeexplore.ieee.org/document/8392410
https://dspace.mit.edu/handle/1721.1/16194
https://dspace.mit.edu/handle/1721.1/5640
https://dspace.mit.edu/handle/1721.1/5640
https://ieeexplore.ieee.org/document/932611
https://ieeexplore.ieee.org/document/932611
http://crlab.cs.columbia.edu/humanoids_2018_proceedings/media/files/0048.pdf
http://crlab.cs.columbia.edu/humanoids_2018_proceedings/media/files/0048.pdf
https://ieeexplore.ieee.org/document/9709544
https://ieeexplore.ieee.org/document/9709544
https://www.roboticsproceedings.org/rss17/p088.html
https://www.roboticsproceedings.org/rss17/p088.html
https://ieeexplore.ieee.org/document/8794074
https://ieeexplore.ieee.org/document/8794074
https://serl-robot.github.io/
https://ieeexplore.ieee.org/document/8793506
https://ieeexplore.ieee.org/document/8793506
https://ieeexplore.ieee.org/document/8793659
https://ieeexplore.ieee.org/document/8793659
https://ieeexplore.ieee.org/document/9197125
https://ieeexplore.ieee.org/document/9197125
https://ieeexplore.ieee.org/document/9197125

[38] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino. Deep Reinforcement Learning
for Robotic Assembly of Mixed Deformable and Rigid Objects. In IROS. IEEE, 2018.

[39] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana. Deep reinforcement
learning for high precision assembly tasks. In IROS. IEEE, 2017.

[40] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese, L. Fei-Fei, A. Garg,
and J. Bohg. Making Sense of Vision and Touch: Learning Multimodal Representations for
Contact-Rich Tasks. IEEE T-RO, 2020.

[41] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
IROS. IEEE, 2012.

[42] E. Coumans and Y. Bai. PyBullet, a Python module for physics simulation for games, robotics
and machine learning, 2016–2021.

[43] R. Tedrake and the Drake Development Team”. Drake: Model-based design and verification
for robotics, 2019.

[44] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged Locomotion in Challenging Terrains
using Egocentric Vision. In CORL, 2022.

[45] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid Locomotion via Rein-
forcement Learning. In RSS, 2022.

[46] N. Rudin, D. Hoeller, M. Hutter, and P. Reist. Learning to Walk in Minutes Using Massively
Parallel Deep Reinforcement Learning. In CORL, 2021.

[47] L. Lan, D. M. Kaufman, M. Li, C. Jiang, and Y. Yang. Affine body dynamics: fast, stable and
intersection-free simulation of stiff materials. ACM Trans. Graph., 2022.

[48] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and Z. Corse. Local optimiza-
tion for robust signed distance field collision. Proc. ACM Comput. Graph. Interact. Tech.,
2020.

[49] B. Acosta, W. Yang, and M. Posa. Validating robotics simulators on real-world impacts. IEEE
RA-L, 2022.

[50] M. Guo, Y. Jiang, A. E. Spielberg, J. Wu, and K. Liu. Benchmarking Rigid Body Contact
Models. In LDCC, 2023.

[51] A. Apolinarska et al. Robotic assembly of timber joints using reinforcement learning. Automa-
tion in Construction, 2021.

[52] M. Hebecker, J. Lambrecht, and M. Schmitz. Towards Real-World Force-Sensitive Robotic
Assembly through Deep Reinforcement Learning in Simulations. In AIM. IEEE, 2021.

[53] X. Zhang, M. Tomizuka, and H. Li. Bridging the Sim-to-Real Gap with Dynamic Compliance
Tuning for Industrial Insertion. In ICRA. IEEE, 2024.

[54] K. Zhang, M. Sharma, J. Liang, and O. Kroemer. A modular robotic arm control stack for
research. arXiv:2011.02398, 2020.

[55] N. Vuong, H. Pham, and Q. Pham. Learning Sequences of Manipulation Primitives for Robotic
Assembly. In ICRA. IEEE, 2021.

[56] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In ICRA. IEEE, 2016.

[57] B. Wen and et al. You only demonstrate once: Category-level manipulation from single visual
demonstration. RSS, 2022.

11

https://ieeexplore.ieee.org/document/8594353
https://ieeexplore.ieee.org/document/8594353
https://ieeexplore.ieee.org/document/8202244
https://ieeexplore.ieee.org/document/8202244
https://ieeexplore.ieee.org/document/9043710
https://ieeexplore.ieee.org/document/9043710
https://ieeexplore.ieee.org/document/6386109
http://pybullet.org
http://pybullet.org
https://drake.mit.edu
https://drake.mit.edu
https://proceedings.mlr.press/v205/agarwal23a.html
https://proceedings.mlr.press/v205/agarwal23a.html
https://www.roboticsproceedings.org/rss18/p022.html
https://www.roboticsproceedings.org/rss18/p022.html
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064
https://dl.acm.org/doi/10.1145/3384538
https://dl.acm.org/doi/10.1145/3384538
https://dair.seas.upenn.edu/assets/pdf/Acosta2022.pdf
https://proceedings.mlr.press/v211/guo23b.html
https://proceedings.mlr.press/v211/guo23b.html
https://www.sciencedirect.com/science/article/pii/S0926580521000200
https://ieeexplore.ieee.org/document/9517356
https://ieeexplore.ieee.org/document/9517356
https://arxiv.org/abs/2311.07499
https://arxiv.org/abs/2311.07499
https://arxiv.org/abs/2011.02398
https://arxiv.org/abs/2011.02398
https://ieeexplore.ieee.org/document/9561029
https://ieeexplore.ieee.org/document/9561029
https://ieeexplore.ieee.org/document/7487517
https://ieeexplore.ieee.org/document/7487517
https://arxiv.org/pdf/2201.12716
https://arxiv.org/pdf/2201.12716

[58] Z. Su, O. Kroemer, G. Loeb, G. Sukhatme, and S. Schaal. Learning manipulation graphs from
demonstrations using multimodal sensory signals. In ICRA. IEEE, 2018.

[59] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events: A
general framework for data-driven reward definition. NeurIPS, 2018.

[60] A. Rodriguez and et al. Failure detection in assembly: Force signature analysis. In IEEE
CASE, 2010.

[61] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation. JMLR,
2021.

[62] R. Petrea, M. Bertoni, and R. Oboe. On the Interaction Force Sensing Accuracy Of Franka
Emika Panda Robot. In IECON. IEEE, 2021. doi:10.1109/IECON48115.2021.9589424.

[63] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

[64] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. In RSS, 2018.

12

https://ieeexplore.ieee.org/document/8461121
https://ieeexplore.ieee.org/document/8461121
https://proceedings.neurips.cc/paper_files/paper/2018/file/c9319967c038f9b923068dabdf60cfe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c9319967c038f9b923068dabdf60cfe3-Paper.pdf
https://ieeexplore.ieee.org/document/5584452
http://jmlr.org/papers/v22/19-804.html
https://ieeexplore.ieee.org/document/9589424
https://ieeexplore.ieee.org/document/9589424
http://dx.doi.org/10.1109/IECON48115.2021.9589424
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.roboticsproceedings.org/rss14/p08.html
https://www.roboticsproceedings.org/rss14/p08.html

A Randomization

All randomization ranges are reported in Table 2. In addition to the dynamics randomization de-
scribed in the text, we also randomize the initial state distribution and observation noise.

Initial State Randomization: At the start of an episode, we randomize the position of the fixed
part, the relative pose of the hand above the fixed part, and the relative position of the held part in
the gripper (where the default position has the top of the held part aligned with the bottom of the
gripper).

Observation Randomization: In simulation, the position of the fixed asset is randomized once per
episode by adding Gaussian noise. Independent Gaussian noise is added to each observation at every
timestep (except velocity, where positional noise is propagated through finite differencing).

B Reward

B.1 Keypoint Reward

Here we describe the keypoint reward in more details. Keypoint distance is calculated as:
dkpt (pheldt , pfixed) = ||kheldt − ktarg||. We use a logistic kernel as in [19] to transform keypoint
distances into a bounded reward: Ka,b(dkp) = (e−ax + b + eax)−1. The kernel can be tuned to be
sensitive to distances at different scales using parameters a and b (see Table 2).

Using a single kernel parameterization was not sufficient for the nut-threading task due to small
geometry. Different phases of the task require motion at different scales. For example, initial place-
ment of the nut on the bolt requires movement ranging from 0 − 2cm. However, lowering the nut
by the final thread changes the position by < 1mm. Instead, we propose a coarse-to-fine keypoint
reward. The final reward is a sum of: (1) A coarse reward directing the arm towards the tip of the
fixed part and; (2) a fine reward incentivizing more detailed motion once the arm is close to the part.
These are implemented using different parameters for the logistic kernel,

Rkp(p
fixed, pheldt) = Kcoarse

ac,bc (dkpt) +Kfine
af ,bf

(dkpt). (6)

Parameters for each task can be found in Table 2.

B.2 Task Success

We also add two discrete bonus rewards that are given when important phases of the tasks are
reached: once the held part is centered on top of the fixed part and once the task is successful:
Rbonus(p

fixed, pheldt) = Iplace + Isuccess. The relative z-position of bottom of the held part to
the top of the fixed part is used to check each condition. We found the bonuses led to more robust
learning when there is significant pose uncertainty.

Each task defines success based on the relative positions between the held and fixed parts (Table 2
shows Success Dist. as the distance between the top of the fixed part and bottom of the held part
when success is achieved):

• Peg Insertion: The bottom of the peg is within 1mm of the base of the socket (equivalently,
24mm below the top of the socket).

• Gear Meshing: The bottom of the gear is within 1mm of the base of the gear plate (equiv-
alently, 19mm below the tip of the gear peg).

• Nut Threading: The M16 nut is lowered a quarter thread (corresponding to 2.5mm below
the tip of the bolt, as the first thread is chamfered).

For all tasks, success also requires the parts to be laterally centered.

13

Initial State Randomization
Parameter All Tasks
Fixed: x, y, z [0.55, 0.65]m, [−0.05, 0.05]m, [0.0, 0.1]m
Hand: x, y (rel) [−2, 2]cm, [−2, 2]cm
Held: x, y (rel) [−3, 3]mm, [0, 0]mm
Parameter 8mm Peg Medium Gear M16 Nut
Hand: z (rel) [3.7, 5.7]cm [2.5, 4.5]cm [0.5, 2.5]cm
Hand: yaw [−45, 45]◦ [−45, 45]◦ [−120,−90]◦

Held: z (rel) [14, 20]mm [12, 15]mm [10, 16]mm

Observation Randomization
Parameter 8mm Peg Medium Gear M16 Nut
Pos-Est Noise 2.5mm 2.5mm 2.5mm
Force Noise 1N 1N 1N
EE-Pos. Noise 0.25mm 0.25mm 0.25mm

Dynamics Randomization
Parameter 8mm Peg Medium Gear M16 Nut
Part Friction [0.5, 1.0] [0.38, 0.75] [0.1, 0.38]
Controller Gains [400, 800] [400, 800] [400, 800]
Action Scale: λ [1.6, 2.5]cm [1.6, 2.5]cm [1.6, 2.5]cm
Dead Zone [0, 5]N [0, 5]N [0, 5]N
Force Threshold [5, 10]N [5, 10]N [5, 10]N

Reward Specification
Parameter 8mm Peg Medium Gear M16 Nut
Coarse (ac, bc) (50, 2) (50, 2) (100, 2)

Fine: (af , bf) (100, 0) (100, 0) (500, 0)
Contact-Pen: β 0.2 0.05 0.05
Success Dist. 24mm 19mm 2.5mm
Place Dist. 2.5mm 2mm 2.5mm
Episode Length 150 (10s) 300 (20s) 450 (30s)

Table 2: Simulation parameters used to train FORGE policies.

C Planetary Gearbox

For the planetary gearbox, we trained policies for the following tasks: Ring Insertion, Small Gear
Meshing, Large Gear Meshing, and M16 Nut Threading.

Gear Tasks: The small and large gear meshing tasks had one abutting gear in simulation. This
is similar to deployment for the small gear which achieved a high success rate (15/15). However,
when the large gear is deployed, it needs to mesh with the three already inserted small gears. This is
much harder than how the policy was trained and could be a cause of the performance drop for this
task (3/5).

Ring Insertion: The outer ring gear must be inserted onto the three bolts of the gearbox base. We
designed simulation assets for the corresponding parts (see Fig. 6) and trained a policy using the
FORGE framework. We assume there is small orientation error on the ring (< 5◦) during training.
Success is defined as having the ring gear placed close to the gearbox base (< 2mm displacement)
and all three bolt holes aligned.

Figure 6: Simulated assets for the ring in-
sertion task. The ring gear (grey) is inserted
onto the gearbox plate (blue).

Gearbox Design: Note, we also designed a “lock”
for the gear carrier which is removed by the robot af-
ter the small gears are inserted. This ensures a fixed
base during the small gear insertions (see video).

Policy Selection: The M16 policy was chosen as
the best policy from our main evaluation (FORGE
No Force). All other policies were trained us-
ing the FORGE framework including force obser-
vations. We trained one policy per task without
any additional checkpoint selection procedure. For
the gearbox experiments only, we selected high con-
trol stiffness for the roll and pitch dimensions of the
impedance controller, as the policy does not generate
actions for these degrees of freedom.

14

Episode Force Early Termination
8mm Peg Success Rate ↑ Duration (s) ↓ Fmean (N) ↓ Fmax (N) ↓ Precision ↑ Recall ↑
FORGE 0.84 (0.05) 5.01 (0.17) 5.51 (0.24) 12.84 (0.37) 1.00 (0.0) 1.00 (0.0)

FORGE (No Force) 0.82 (0.06) 7.30 (0.42) 7.09 (0.35) 14.16 (0.39) 0.59 (0.08) 0.81 (0.07)
No FP (400kp) 0.64 (0.07) 6.06 (0.40) 6.94 (0.13) 11.94 (0.24) 0.83 (0.07) 0.92 (0.05)
No FP (600kp) 0.71 (0.07) 5.28 (0.35) 10.66 (0.15) 16.58 (0.32) 0.91 (0.05) 0.97 (0.03)

Baseline 0.64 (0.07) 5.09 (0.30) 11.81 (0.21) 17.93 (0.41) 0.97 (0.03) 1.00 (0.0)

Medium Gear Success Rate ↑ Duration (s) ↓ Fmean (N) ↓ Fmax (N) ↓ Precision ↑ Recall ↑
FORGE 0.98 (0.02) 6.34 (0.42) 7.95 (0.11) 15.10 (0.45) 0.95 (0.03) 1.00 (0.0)

FORGE (No Force) 0.93 (0.04) 9.02 (0.79) 8.49 (0.23) 14.68 (0.39) 0.60 (0.08) 1.00 (0.0)
No FP (400kp) 0.82 (0.06) 6.44 (0.23) 6.52 (0.14) 10.97 (0.24) 1.00 (0.0) 1.00 (0.0)
No FP (600kp) 0.73 (0.07) 6.99 (0.46) 9.48 (0.23) 15.73 (0.30) 0.94 (0.04) 0.97 (0.03)

Baseline 0.69 (0.07) 7.57 (0.50) 11.67 (0.45) 18.29 (0.40) 0.90 (0.05) 0.97 (0.03)

M16 Nut Success Rate ↑ Duration (s) ↓ Fmean (N) ↓ Fmax (N) ↓ Precision ↑ Recall ↑
FORGE 0.44 (0.07) 24.50 (1.35) 6.88 (0.14) 13.34 (0.17) 0.50 (0.11) 1.00 (0.00)

FORGE (No Force) 0.69 (0.07) 13.16 (0.66) 7.78 (0.17) 14.41 (0.28) 1.00 (0.0) 1.00 (0.0)
Baseline 0.20 (0.06) 27.89 (2.22) 7.32 (0.23) 16.73 (0.29) 0.11 (0.10) 1.00 (0.0)

Table 3: Baseline Comparison FORGE (with and without force observations) is compared to base-
lines that do not include robust sim-to-real components. It is additionally compared to ablations that
do not use an excessive-force penalty. Evaluations are performed over a total of 585 trials on the
real robot (45 per row). Standard errors are included in parentheses.

Task Execution: To pick up the held parts, we assume a known grasp location which was prede-
termined (with small noise from placement error). However, the location of the corresponding fixed
parts were estimated from the IndustReal perception system [7]. Grasping and movement to the
initial state for policy execution was performed with a standard position controller. No additional
artificial noise or initial-state randomization was added for the gearbox experiments.

D Experimental Setup

Robot System: We use a Franka Panda robot and the FrankaPy [54] library for the impedance
controller. Policies send targets to the controller at 15Hz while the controller operates at 1000Hz.
The Panda has joint-torque sensing, which can be projected to EE-frame force values [62].

For most experiments, we calibrate the poses of each fixed object and artificially add noise. This
allows us to analyze performance under known levels of pose estimation error. Real experiments
use the same initial state randomization as in simulation (see Appendix A). For our last experiment,
we assemble a planetary gear box (Section 4.4) using the perception system from IndustReal [7]
(retrained using data we collected). The perception errors in this system are largely caused by
extrinsics calibration errors and minor bounding box prediction errors.

Simulator: All policies are trained using the Factory simulation methods within IsaacGym [5].
Noisy sensor values are used as policy input, whereas ground-truth sensor values are used to compute
the excessive-force penalty. For all RL, we use recurrent PPO [63] with asymmetric actor-critic [64]
to handle partial observability. More training details can be found in Appendix A.

Checkpoint Selection: For all tasks and models, we train three policies with separate random seeds.
For the peg and gear tasks, all policies are deployed on the real-robot and reported results are aver-
aged across the three policies. For the nut task, we found that not all policies transferred reliably to
the real world, even when high success rates are achieved in simulation. As such, for this task, we
report results for the best of the three checkpoints (determined using 18 test runs each).

Observation and Action Frames: For generalization across the workspace, we assume actions
and observations are defined relative to the tip of the fixed part. The policy outputs a 4D relative
transform from the tip of the fixed part (we assume upright parts). The policy output is bounded,
which limits the operational volume of the end-effector (we allow targets to be up to 5cm away).

15

E Additional Results

Behavioural Properties (Q2): Does FORGE lead to policies with more desirable behavioural prop-
erties?

Along with success rate, the following metrics are reported to answer Q2 in Table 3:

• Duration (s): Average trial length using an early termination threshold of pterm = 0.9.
• Fmean, Fmax(N): Forces experienced by the robot.
• Early Term. Precision: Fraction of early-terminated trials that were successful.
• Early Term. Recall: Fraction of successful trials which were terminated correctly with
aET > pterm.

Examining the behavioural metrics for Q2, we notice that FORGE used less force than the baseline
and had minor improvements in trial duration. During experiments, we observed FORGE led to
gentler interactions between the parts (see accompanying video). The reduced force produced by
this policy was especially helpful for the M16 Nut which was more susceptible to slipping than the
peg or gear.

Excessive-Force Penalty (Q5): How important is the excessive-force penalty for safe interactions?

In Table 1, we compare to an ablation, No FP, that was trained without the excessive-force penalty
of FORGE (but still used force observations and dynamics randomization). We used the same eval-
uation procedure as for FORGE but deployed with two different controller gains (we chose values
at the lower and middle of the gain randomization range). Note that ablation results are not reported
for nut-threading as we found that the nut always slipped out of the gripper. We found that policies
deployed with the lower gains achieved similar average forces to FORGE while those deployed with
higher gains naturally experienced more force. Both policies had lower success rates than FORGE
which was deployed with controller gains at the middle of the randomization range.

Success Prediction Analysis:

To evaluate the early termination procedure, we ask: (Q6) Does success prediction, trained in
simulation, transfer to the real world? (Q7) How much efficiency is gained when the policy
determines when to terminate?

To answer Q6, results in Table 3 show that early termination prediction transferred well to the real
world. While the termination method tended to correctly identify successes for all models (high
and often perfect recall), we see that precision was best when using force observations for the gear
and peg tasks. This shows the benefit of force for sensing task completion: when the bottom of the
socket has been reached, or the gear has been fully meshed.

To answer Q7, we use Delay Time (s) to capture efficiency (lower values are better). Delay time
measures the time between when success occurred and when the episode was terminated. We com-
pare the proposed method (Pred Term) to a standard termination method that stops the policy after
a fixed duration, T (Fixed Term). Each method has a parameter that can be tuned to produce a
different success rate (fraction of episodes that are successful when terminated). However, this will
introduce a trade-off with delay time:

• Fixed Term (T): Waiting too long is inefficient while terminating too early will harm suc-
cess rates.

• Pred Term (pterm): A high threshold can cause extra delay while a low threshold can affect
success rate.

Fig. 7 is a simulated analysis that shows the relationship between Delay Time and Success Rate
for each method. Each line was generated by measuring the success rate and corresponding delay
time across a fine discretization of each method’s termination parameter. These were then sorted

16

Figure 7: Success Prediction Analysis Relationship between Delay Time and Success Rate for
two early termination methods (generated by varying each method’s respective parameter: T or
pterm). The Pred Term method leads to lower delays than the Fixed Term method, especially at
higher success rates. The vertical line shows a 0.8 success rate.

by success rate and plotted.2 As a practitioner, one could choose a desired success rate and find the
resulting delay.

Across all tasks, we see that the Fixed Term method leads to longer delays, especially at higher
success rates (we plot a vertical line to show the 0.8 success rate). The early termination action,
aET , allows for dynamic episode lengths, leading to high success rates with smaller delay times.

2Similar to an ROC plot, but higher areas above the curve are better.

17

	Introduction
	RL for Contact-Rich Assembly
	POMDP Formulation

	FORGE: Robust Search under Uncertainty
	Force Threshold
	Dynamics Randomization
	Early Termination

	Results and Discussion
	Baseline Comparisons
	Noise Analysis
	Force Analysis
	Multi-Stage Assembly

	Related Work
	Conclusion
	Randomization
	Reward
	Keypoint Reward
	Task Success

	Planetary Gearbox
	Experimental Setup
	Additional Results

