
Dynamics-Guided Diffusion Model
for Sensor-less Robot Manipulator Design

Xiaomeng Xu1 Huy Ha2 Shuran Song1

1Stanford University 2Columbia University

https://dgdmcorl.github.io

Abstract: We present Dynamics-Guided Diffusion Model (DGDM), a data-driven
framework for generating task-specific manipulator designs without task-specific
training. Given object shapes and task specifications, DGDM generates sensor-
less manipulator designs that can blindly manipulate objects towards desired mo-
tions and poses using an open-loop parallel motion. This framework 1) flexi-
bly represents manipulation tasks as interaction profiles, 2) represents the design
space using a geometric diffusion model, and 3) efficiently searches this design
space using the gradients provided by a dynamics network trained without any
task information. We evaluate DGDM on various manipulation tasks ranging
from shifting/rotating objects to converging objects to a specific pose. Our gener-
ated designs outperform optimization-based and unguided diffusion baselines rel-
atively by 31.5% and 45.3% on average success rate. With the ability to generate
a new design within 0.8s, DGDM facilitates rapid design iteration and enhances
the adoption of data-driven approaches for robot mechanism design. Qualitative
results are best viewed on our project website https://dgdmcorl.github.io.
Keywords: manipulator design, hardware optimization, diffusion model

before interaction after interaction

θtarget

 θtarget

 θtarget

 θtarget

θtarget

 θtarget

θtarget

 θtarget

 θtarget

 θtarget

θtarget

Shift Up

Sensor-less Manipulation Tasks

Target ObjectTarget Object Rotate ClockwiseShift Left

θtarget

Convergence (from different initial poses to the same pose)

Figure 1: Task-specific Designs without Task-specific Training. Given different input objects (1st column),
DGDM generates diverse manipulator geometries tailored to different manipulation tasks without task-specific
training, which can be deployed under the sensor-less setting with an open-loop parallel closing motion.

1 Introduction
Mechanical intelligence refers to the utilization of mechanical design to solve tasks [1]. A substantial
body of evidence in both natural [2] and artificial systems [3] has demonstrated that well-customized
embodiments can significantly simplify an agent’s perception and control, thereby enhancing overall
robustness [4]. Despite its advantages, mechanical intelligence in robotics has recently been over-
shadowed by the rapid development of its counterpart, “action intelligence”, where the agent focuses
on inferring different actions for different tasks, assuming a fixed mechanical embodiment design.

In contrast, learning for mechanical design has largely focused on single task optimization [5, 6] or
heavily engineered objective functions that could not be reused for new design task [7, 8, 9, 10, 11,

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://dgdmcorl.github.io
https://dgdmcorl.github.io

Target Object

Task Specification

Dynamics-
Guided

Diffusion
Model

Finger Designs

Convergence Pose
“Align object
to a specific

pose”

Sensorless Deployment

θ = θtarget

θ = 175°

 θ = 120°

θ = θtarget

θ

θ = 90°

θ = θtarget

θ

θ = 60°

θ = θtarget

θ

be
fo

re
af

te
rθtarget

Task & Object Conditioned Design

Figure 2: The Convergence Task is to design fingers that always reorient a target object to a specified orienta-
tion θtarget (in the manipulator frame) when closing the gripper in parallel. This task enables funneling objects
from arbitrary poses to a specific θtarget in a sensor-less setting, and moving objects to any particular configura-
tion combined with a global transformation of the gripper. Despite its utility, designing for convergence can be
counter-intuitive – it often takes an expert many design cycles to come up with just one design for one object.
In contrast, DGDM can generate a functional design for a new object in seconds.

12]. In practice, this means automating task-specific design typically involves recollecting training
data for every scenario, which is too expensive to be practical. Therefore, we investigate the follow-
ing question: Can we automate task-specific mechanical design without task-specific training?

We introduce Dynamics-Guided Diffusion Model, a framework that generates manipulator geom-
etry designs that can manipulate objects towards desired motions and poses with no task-specific
training and no perception or closed-loop control - only a parallel jaw closing motion. From tasks
as simple as shifting/rotating objects to complex tasks requiring sequential interactions such as pose
convergence (Fig. 2), DGDM generates designs in seconds with geometry changes that are highly
adapted to the task and object. Our framework answers two key research questions:

• How to represent the task space? The task representation has to be expressive enough to capture
the wide range of manipulation tasks while being compact enough to be readily learned from data.
Our key insight is that many manipulation tasks can be decomposed into a collection of individual
motion targets that specify how each object should move under each initial pose, which we call
interaction profile. While the final composed objective is specific to the task, each of the individual
motions can be modeled by a generic dynamics network that is reusable across tasks.

• How to facilitate efficient search? As the design space grows, the design objective landscape of-
ten becomes multi-modal w.r.t. the design parameters, and generating promising yet diverse design
candidates becomes challenging. To address this issue, we first represent the design space using an
unconditional geometric diffusion model. Then, the interaction profile for an object and the fingers
is inferred with the dynamics network. The design objective constructed by comparing the current
with the target interaction profiles gives us a gradient on how to update the finger. This dynamics
guidance is incorporated into diffusion denoising steps similarly to classifier guidance [13].

We demonstrate results on both 2D and 3D objects with a variety of manipulation objectives ranging
from simple to complex and single- to multi-object objectives, all under a sensor-less setting, where
the initial pose of the object is unknown. Experiments in simulation and the real world demonstrate
that designs generated by DGDM achieve high task performance, with 31.5% and 45.3% relative
success rate improvements compared to optimization and unguided diffusion baselines.

2 Related work

Manual End-effector Design. The diverse array of manipulator designs we see today, including
serial versus parallel, from dexterous to underactuated, typically start from many trail-and-error
iterations by experts. Heavy manual efforts are needed to discover optimal and occasionally counter-
intuitive designs, which hinders the development of designs for new applications. For instance, for
complex manipulation tasks such as convergence (Fig. 2), previous works only deal with 2D planar
polygons, utilizing manual/analytical designs of grasping policy [14, 15] or gripper geometry [16].

2

Analytical Optimization for Automatic End-effector Design. To alleviate the manual efforts,
previous works have explored optimization approaches to manipulator design. Non-linear optimiza-
tion approach [17] typically requires careful task-specific formulation of objectives and constraints.
First-order optimization of morphology [18] or both morphology and control [17, 7, 19] is more
common, but requires careful initialization (task-specific parameterization [18], cage-based defor-
mation [7, 8], or heuristics [19]). Further, tasks involving complex contact modes are known to
yield biased and high variance gradients in differentiable simulators [20, 8]. Importantly, all manual
efforts involved in setting up an optimization problem are typically not transferrable to new tasks.

Data-driven Robot Hardware Design. Data-driven approaches improve over optimization-based
approaches by transferring knowledge from training to reduce the cost at inference. A common
approach is to train a value network that takes the design parameterization as input and outputs
the design’s task performance. This value network can be used to guide a search/optimization pro-
cedure, which has been explored in gripper design [5] and locomotion [21, 22], to guide optimiza-
tion [5, 23, 6] or graph search [21, 22, 10, 24]. Another approach is to learn a generative model of the
design space, which compresses the design space into a low-dimensional continuous latent space.
This makes offline optimization via gradient-descent [5, 23] or online optimization via trial-and-
error rollouts of random latent-space samples [5, 10, 6] significantly more efficient. Finally, when
co-optimizing morphology and control, leveraging control experience from prior embodiment evalu-
ations can significantly improve the efficiency and accuracy of new embodiment evaluations [9, 12].
However, all these approaches require a large amount of task-specific data, while we eliminate this
requirement by leveraging dynamics as the shared structure between manipulation tasks.

3 Approach

3.1 Interaction Profiles as Task Specification

Requirements for a manipulation system are incredibly diverse, ranging in what initial poses are
allowed, what objects are considered, and what the desired effects are. Parameterizing the space of
manipulation tasks call for a representation expressive enough to capture all the diverse tasks. More-
over, this representation should be compact - containing only the necessary information to capture
how the object interacts with the finger, such that it is efficient to evaluate/learn. For instance, mod-
eling the detailed physics states in differentiable simulators [7] is expressive, but forward integrating
the dynamics over the time horizon for every finger evaluation is expensive.

Interaction Profiles. Many manipulation tasks can be decomposed into a collection of individual
motion targets that specify how each object should move under each initial pose after interacting
with the manipulator. By combining motions from all objects and initial poses, we get a complete
profile of how the manipulator will interact with the target objects - the “interaction profile”.

Denote by o and m the geometry parameters of object shape and manipulator shape. When the
object is at the initial planar pose p = (θ ,x,y), closing the manipulator once will change the object’s
pose by ∆p = (∆θ ,∆x,∆y), dictated by the manipulator-object interaction dynamics D. We refer
to scalar-valued functions f defined on top of ∆p as motion objectives and aggregate these motion
objectives among all initial poses p and objects o to get the design objective F .

Example: Multi-object Shift Up
To design a manipulator that shifts a set of objects upwards, each motion objective is defined as

f (o,m, p) = ∆y(o,m, p) (1)

where ∆y is the y-translation component of ∆p. The design objective is aggregated from (1) as

F(m) = ∑
o

∑
p

f (o,m, p) (2)

Interaction profiles can scale to varying ranges of initial poses and objects. Thus, using a larger set
of initial poses and objects will yield an objective that is more robust to different initial poses and

3

tailored to more objects. Since each motion objective is conditioned on p, this approach also allows
for objectives dependent on initial poses, as illustrated in the following example.

Example: Pose Convergence
The goal of pose convergence is to rotate an object to a target orientation θtarget relative to the
manipulator (Fig. 2). The manipulator should funnel a wide range of initial configurations into a
single target orientation with no perception, no closed-loop control, only a parallel gripper closing
motion on repeat. How the object should rotate depends on the initial orientation θ relative to the
target orientation θtarget:

f (o,m, p) =
{

∆θ(o,m, p) if θ ∈ [θtarget−π,θtarget]

−∆θ(o,m, p) if θ ∈ [θtarget,θtarget +π]
(3)

The objective for this task can then be aggregated from (3) analogously to (2).

If ∇mF can be efficiently computed, we can use this gradient to optimize a pair of fingers m that
achieves the task. To achieve this, we propose to represent interaction dynamics D as a neural
network and train it using data generated from interactions between random finger-object pairs.

3.2 Dynamics Network
The dynamics network D : (o,m, p) 7→ ∆p aims to learn a general model of how a random distribu-
tion of fingers interacts with a distribution of objects. Importantly, it provides gradients of the design
objective with respect to the finger representation (Fig. 3).

Shape Representation. We choose cubic Bézier curves and surfaces as the manipulator shape
representation [25]. Control points are grid sampled along the length (and height in 3D) of the finger
while the remaining y-coordinate determines its protrusion outwards/inwards, which we define as m
- the geometry parameter of manipulator. We represent object shape o as a point cloud by sampling
100 points from each 2D object contour and 512 3D points from 3D object surfaces.

Motion Representation. We represent object motion under interaction as a three-dimensional vec-
tor consisting of delta rotation along the z-axis, delta translation along the x-axis, and delta transla-
tion along the y-axis, denoted as ∆p = (∆θ ,∆x,∆y).

Network Architecture. First, we transform object initial poses p with a high-frequency positional
encoding - a trick used to combat over smoothing of neural networks [26]. Then, o and m are
passed through separate 2-layer MLPs with 256 hidden dimensions, before being concatenated with
the pose embedding. Finally, the resulting embedding is passed through an 8-layer MLP with 256
hidden dimensions to get the predicted object motion ∆p. In 3D, we use a PointNet++ [27] to encode
object geometry, whereas all other parts of the network are shared between 2D and 3D tasks.

Training Data Generation. Our training data generation happens once for all tasks. We sample
object and manipulator pairs, load them into MuJoCo [28] simulation environment, and measure
∆p after a single parallel closing interaction. We generate 321 planar object shapes from the Icons-
50 dataset [29] in 2D, and select 164 objects from Google’s Scanned Objects Dataset [30, 31] in
3D. We randomly sample 1024 manipulator geometry parameters m from a uniform distribution.
For each object-fingers pair, we grid sample 360 initial orientations and 25 initial positions, getting
321×1024×360×25 training data points for 2D dynamics network and 164×1024×360×25 for 3D.

Design Objective Gradient Evaluation. To design manipulators that are generalizable to more
initial poses p and objects o, the design objective F (2) can be evaluated for a wider range of
poses and objects. We grid-sample initial poses of a set of objects and evaluate motion objectives
in parallel. The design objective gradient ∇mF is attained by aggregating the gradients along the
pose/object batch dimension. For each new design, evaluating ∇mF takes 0.16 seconds on average,
making it efficient to run in the inner loop of iterative design procedures. Specifically, we grid-
sample 360 orientations and 5×5 positions, getting a 360×5×5 dimensional motion profile.

3.3 Dynamics-Guided Diffusion Model

4

D
yn

am
ic

s
M

od
el

current

gradients

w.r.t. control points

objective

target

In
te

ra
ct

io
n

Pr
of

ile

Diffusion Model

Sampled Poses

mk-1

mk

θ

Δ

θ

+

+

-
θ

target

repeat K iterations

m
K

G
au

ss
ia

n
N

oi
se

Fi
na

lF
in

ge
rs

m
0

Target Object Task Objective

Figure 3: DGDM generates finger shapes given a target
object and task, specified as a target interaction profile
(§ 3.1). This is compared with the dynamics network’s
prediction of the current interaction profile, which is
used to construct an objective (§ 3.2). Gradients of the
objective iteratively guide the reverse denoising process
of a manipulator shape diffusion model (§ 3.3).

Given design objective gradients from D, the
obvious approach is to perform gradient de-
scent on the finger geometry [5, 19]. How-
ever, the distribution of good designs are often
multi-modal, which means gradient descent ap-
proaches quickly get stuck in local minima. To
efficiently navigate through the large and multi-
modal design space, we extend classifier guid-
ance [13], an iterative diffusion model sampling
approach that enables a balance between diver-
sity and task-specific guidance (Fig. 3).

Diffusion Models [32, 33] are a class of proba-
bilistic generative models that generate samples
from an underlying distribution through itera-
tive denoising. A diffusion model εθ (mk) pre-
dicts the noise added to a sample m0. We start
with a Gaussian noise mK and gradually predict less-noisy samples mK−1,mK−2, ... until m0 through
a reverse noising process of modeling the distribution pθ (mk−1|mk). Specifically, we sample geom-
etry parameters of manipulator m from a uniform distribution and train a geometric diffusion model
(with 1D UNet architecture [34]) on this distribution once and for all tasks. We employ Denoising
Diffusion Implicit Models (DDIMs) [35] for diffusion sampling process with 15 training denoising
iterations and 5 inference iterations, and the Square Cosine noise scheduler [36].

Classifier Guidance [13] guides the reverse noising process with priors of an unconditional diffu-
sion model. It requires a classifier pφ (l|mk), where mk is the sample, l is the class label, and φ is
the classification network. Leveraging the connection between diffusion models and score match-
ing [37, 38], a new noise prediction can be defined as:

ε̂(mk) := εθ (mk)−
√

1− ᾱk∇mk log pφ (l|mk) (4)

where ᾱk :=∏
k
t=1 1−βt , βt is the variance of Gaussian noise added to samples at step t. Then DDIM

can be performed with the modified noise prediction for conditioned sampling.

Algorithm 1 Dynamics-guided DDIM sam-
pling, given a diffusion model εθ (mk), design
objective F(mk), and gradient scale s.

Input: design objective F(·), gradient scale s
mK ← sample from N (0,I)
for all k from K to 1 do

ε̂ ← εθ (mk)− s
√

1− ᾱk∇F(mk)

mk−1←
√

ᾱk−1

(
mk−
√

1−ᾱk ε̂√
ᾱk

)
+
√

1− ᾱk−1ε̂

end for
return m0

Dynamics Guidance. To guide the design gen-
eration towards specified manipulation tasks, we
extend classifier guidance to use design objec-
tives constructed from interaction profiles, which
we term dynamics guidance. We replace classi-
fier gradients with ∇mk F(mk) to guide the DDIM
sampling process (Algo. 1). We not only en-
able guiding unconditional diffusion models with
task-specific gradients, but also allow tuning the
guidance scale s to trade off diversity and perfor-
mance. Dhariwal and Nichol [13] showed that
when s is larger the distribution becomes sharper and generated samples have higher fidelity, while
smaller s leads to more diverse samples, which we also observed in our generated results (Fig. 4).

4 Evaluation
Manipulation Tasks & Metrics. We evaluated each approach on held-out objects (8 in 2D, 6 in
3D) and manipulation tasks. Each pair of fingers is mounted to a WSG50 gripper performing a
fixed open-close action. We categorize our suite into two difficulty levels: 1) Simple objectives in-
volve single-axis object movements in SE2 space, including shifting up/down/left/right and rotating
clockwise/counterclockwise. For each object-manipulator pair, we grid-sampled 360 planar initial
object orientations and performed fixed open-close actions. The task is considered as successful if
the movement of the object along the specified axis is larger than a predefined threshold (0.03 rad
for rotation, 3 mm for x-axis translation, 2 mm for y-axis translation). For example, a manipulator

5

designed for the rotating objective succeeds if it rotates the object larger than 0.03 rad after the first
closing action. Then, we report the average success rate over all sampled initial object orientations.
2) Complex objectives combine multiple simple objectives to parameterize a broad range of ma-
nipulation tasks. For the convergence objective, we report the maximum convergence range (◦),
indicating the broadest range of initial object orientations that can be driven towards a consistent
final orientation within a small tolerance (5◦). Observing continued object movement, we report
the metric after the 40th open-close manipulator action. Additionally, we explored rotate clockwise
and shift up/left, and rotate either way objectives to showcase DGDM’s flexibility in composing
conflicting objectives. These tasks were evaluated on average success rates.

Comparisons. Removing the dynamics guidance yields the Unguided baseline, which generates
task-agnostic manipulators using our geometric diffusion model. Removing our diffusion model
yields the GD baseline, which optimizes the manipulator control points using gradients of the de-
sign objective ∇F via gradient descent optimization, common for many prior works [5, 7, 8, 19].
We also evaluated a gradient-free optimization baseline - CMA-ES [39] (covariance matrix adap-
tation evolution strategy) that optimizes finger control points from objectives constructed from the
dynamics network. Notably, we ran it with more than ×10 the compute (and ×10 time) of DGDM.
To mitigate performance variance due to initialization, we ran each approach 16 times with different
initializations per object-task pair and selected the best performance, then averaged among objects.

4.1 Experiment Results
Table 1: Single Object Evaluation (Avg success rates % and
convergence range ◦).

Simple Objective Complex Objective

up do
w

n

le
ft

ri
gh

t

cl
oc

k

co
un

te
r

ro
ta

te

cl
oc

ku
p

cl
oc

kl
ef

t

co
nv

er
ge

2D

Unguided 56.8 82.1 82.9 80.4 46.9 58.5 74.0 36.4 36.9 61.7°
GD 79.5 53.3 81.3 94.0 48.8 73.2 78.9 29.3 49.4 73.7°

CMA-ES 80.7 82.2 88.1 97.0 60.5 73.9 80.3 52.2 55.8 73.4°
DGDM 88.2 92.0 96.7 97.7 60.8 72.0 79.3 62.8 63.7 83°

3D

Unguided 43.0 43.8 80.4 87.9 41.2 33.5 64.2 30.3 33.1 63.6°
GD 47.4 66.3 86.3 88.1 59.1 52.0 66.9 29.2 37.7 60°

CMA-ES 50.2 70.8 85.2 80.9 53.9 50.3 72.7 32.7 42.1 70°
DGDM 81.5 75.1 95.1 97.2 69.9 65.0 83.0 57.1 58.2 72.5°

Generating task-specific manipulators
designs. DGDM generates tailored fin-
gers for a wide variety of scenarios, sur-
passing the unguided baseline across all
tasks. The advantages of generating cus-
tom fingers become more pronounced as
the design requirements escalate. For in-
stance, DGDM exhibited a +16.6% im-
provement over the unguided baseline in
2D simple objectives, a figure that ex-
panded to 20.0% in 2D complex objectives
(see Tab. 1). A similar trend was observed when transitioning from 2D to 3D objects (+18.0% over
Unguided in 2D, +23.4% over Unguided in 3D, Tab. 1) and from single-object to multi-object de-
signs (+18.0% over Unguided in single-obj 2D, +18.6% over Unguided in multi-obj 2D, Tab. 2).

Table 2: Multi-object Evaluation
Simple Complex

up do
w

n

le
ft

ri
gh

t

cl
oc

k

co
un

te
r

ro
ta

te

cl
oc

ku
p

cl
oc

kl
ef

t

2D

Unguided 55.8 79.8 77.1 80.2 44.7 56.4 68.3 35.2 35.2
GD 78.6 50.3 79.2 93.8 46.1 71.4 74.3 25.0 49.0

CMA-ES 77.7 62.2 79.3 97 51.8 70.6 73.1 22.1 37.3
DGDM 83.8 88.1 99.3 94.3 61.3 68.4 78.4 62.4 63.8

3D

Unguided 40.1 40.8 75.8 87.9 34.7 29.2 61.7 29.2 25.2
GD 42.4 66.4 77.9 86.6 40.3 39.2 67.0 22.6 34.3

CMA-ES 50.4 65.6 76.9 89.2 45.2 41.9 68.4 28.7 33.5
DGDM 89.7 66.8 96.1 95.4 69.3 58.2 77.6 44.2 37.9

When task complexity, design space, and the
target object set grow, a human expert designer
would face significantly increased time and ef-
fort. DGDM handles progressively complex
design requirements by aggregating gradients
from individual motion objectives. A new task
can be specified as long as users can articulate
how each object should move from each initial
pose, and can be seamlessly incorporated into
the diffusion denoising process.

Robust & efficient search with guided diffu-
sion. The GD baseline and DGDM share the same design objective gradients from our dynamics
network, differing only in how this gradient information is incorporated. The baseline uses gradi-
ent descent, requiring upwards of 18 and 24 minutes to converge in 2D and 3D (for 16 samples),
respectively, and is prone to local minima. In contrast, DGDM utilizes classifier-guidance with a
diffusion denoising process, which strikes a balance between exploring different modes (by intro-
ducing Gaussian noise) and exploiting the current mode (using the gradient of design objective)
through a guidance scaling factor (Fig. 4). This results in +12.8% and +10.4% higher success rates

6

Unguided UnguidedOurs Ours

50 150!

cvrg. range cvrg. target cvrg. range cvrg. target cvrg. range cvrg. target cvrg. range cvrg. target

2D

(a) (e)

(b) (f)

3D

(c) (g)

(d) (h)

92.8° 127.7° 10.0° 115.6°

Figure 5: Convergence Results. For each pair of finger designs, we show the range of initial orientations
(“cvrg. range”) which converges to the same convergence mode (“cvrg. target”).

than the baseline in 2D and 3D simple objectives, respectively. Additionally, our diffusion models
prove stable even with diffusion processes as short as 5 timesteps, translating to an average design
time of 13 and 54 seconds in 2D and 3D, respectively.

scale=20

...

scale=2scale=0

Figure 4: Effect of Scaled Guidance. From left to right
we increase the scaled guidance in the diffusion pro-
cess. The increased scale enforces more task guidance
and achieves higher task performance (shifting down)
while reducing the diversity of generated designs.

Emergent design for convergence. What
strategies do our designs employ to achieve
convergence from a broader range of initial ori-
entations compared to the unguided baseline
(Tab. 1)? We identify two emergent design pat-
terns: 1) Push-and-Catch: One finger features
a bulge that pushes the object into the hollow
cavity of the other finger (Fig. 5 a,b,d-f,h). This
cavity roughly complements the object’s shape
at the convergence point. 2) Parallel-Align:
When objects exhibit symmetric flat edges, our
designs utilize two parallel surfaces to align these edges (Fig. 5 c,g). The generated designs simul-
taneously exploit object geometry and physics to achieve the most effective convergence.

Shift Down

Si
ng

le
-o

bj
M

ul
ti

-o
bj

Rotate Clockwise Rotate Either Direction (3D)

Figure 6: Specialized or Generalized Design in Multi-object Scenarios. Our approach can be flexibly con-
ditioned on individual objects and generate a specialized design for each object [Top] or simultaneously condi-
tioned on multiple objects and generate one design for all objects [Bottom].

Specialized or generalized designs for multi-object scenarios. DGDM is able to generate more
generic designs for multiple objects (Fig 6). In contrast, the unguided baseline lacks task-specific
guidance, hindering its ability to guide its generations toward a common design objective for all ob-
jects. On the other extreme, the GD baseline often gets stuck in a local minimum. These limitations
are reflected in Tab. 2, with our approach achieving +18.6% and +23.4% higher success rates than
the unguided baseline, and +14.7% and +17.6% higher success rates than the GD baseline. Natu-
rally, we acknowledge that multi-object finger designs often sacrifice some performance compared
to the single-object scenario (−1.5% in 2D, −5.2% in 3D). This balance between generality and

7

Shift DownTarget Obj. Shift Right Rotate Counter Convergence

Figure 7: Real-world Results. We manufacture manipulators generated by DGDM and execute the open-loop
parallel closing motion. Behaviors in simulation successfully transfer to the real world. Red and green masks
denote object configurations before and after interaction respectively.

task-specific performance is a fundamental trade-off in mechanism design in automation, with the
optimal compromise dependent on the specific application.

Real-world evaluation with Sim2Real transfer. We show real-world results of all tasks for both
2D and 3D cases by mounting the 3D printed designs on a WSG50 gripper (Fig. 7). The material
we use for 3D printing objects and fingers is PLA and the molding solution is FDM. In Tab. 3 we
show the real-world and simulation quantitative results side by side. For the shifting down/right and
rotating counterclockwise tasks, we tested with 10 random initial poses (0◦-360◦ orientations and
±5cm from the center) of the object in the real world and reported the average success rate (%). For
the convergence task, the maximum range of initial orientations (°) that can be driven to the target
convergence pose is reported. We observe that the performance in the real world is very close and
oftentimes better than the simulation result, suggesting a small sim2real gap.

Table 3: Real-world Quantitative Results
Shift Down Shift Right Rotate Counter Convergence
sim real sim real sim real sim real

2D
T 93.1 90 100 100 75.3 70 111° 124°

Heart 78.3 80 99.2 100 66.1 70 117° 119°

3D
Chair 91.4 100 100 100 68.6 70 93° 86°
Basket 96.9 100 100 100 65.3 70 82° 88°

This is due to our sensor-less formulation,
where we do not need perception or closed-loop
control. With the same fixed parallel motion
in sim and real, the transferability is only de-
termined by the geometry and contact physics.
Our dynamics guidance is conditioned on many
initial object poses, enabling the generated de-
signs to be robust to different initial object poses, relying on more prominent physical phenomena
that are consistent between sim and real. Moreover, the sensor-less manipulation tasks only require
the directions of individual object motions to be accurate but not the magnitudes. We see this effect
when we use PLA with a lower friction coefficient in real than in sim, allowing the objects to slide
more smoothly but in the same direction, leading to oftentimes better performance in real.

5 Conclusions

We present Dynamics-Guided Diffusion Model, a versatile framework for the rapid generation of
diverse and tailored manipulator geometry designs for unseen tasks. With the ability to generate
a new design within 0.8s, this task-agnostic framework lays the groundwork to enable more rapid
experimentation and future research. We hope that our framework contributes to the wider adoption
of data-driven approaches in robotic mechanism design.

8

Acknowledgements

We thank Zhenjia Xu, Cheng Chi, Mandi Zhao, Zeyi Liu, Yifan Hou, Austin Patel, Chuer Pan,
Yihuai Gao, Dominik Bauer, Samir Gadre, Mengda Xu and John So for their thoughtful discussions
and helpful feedback on initial drafts of the manuscript. This work was supported in part by the
NSF Award #2143601, #2037101, and #2132519. We would like to thank Google for the UR5
robot hardware. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of the
sponsors.

References
[1] Q. Lu, N. Baron, G. Bai, and N. Rojas. Mechanical Intelligence for Adaptive Precision Grasp.

In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 4530–
4536, 2021.

[2] D. N. Beal, F. S. Hover, M. S. Triantafyllou, J. C. Liao, and G. V. Lauder. Passive propulsion
in vortex wakes. Journal of Fluid Mechanics, 549:385–402, 2006.

[3] T. McGeer. Passive Dynamic Walking. The International Journal of Robotics Research, 9(2):
62–82, 1990.

[4] R. Pfeifer and G. Gómez. Morphological computation–connecting brain, body, and environ-
ment. Creating brain-like intelligence: From basic principles to complex intelligent systems,
pages 66–83, 2009.

[5] H. Ha, S. Agrawal, and S. Song. Fit2Form: 3D generative model for robot gripper form design.
In Conference on Robot Learning, pages 176–187. PMLR, 2021.

[6] T.-H. J. Wang, J. Zheng, P. Ma, Y. Du, B. Kim, A. Spielberg, J. Tenenbaum, C. Gan, and
D. Rus. DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative Diffusion
Models. Advances in Neural Information Processing Systems, 36, 2024.

[7] J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik, S. Sueda, and P. Agrawal. An End-to-End
Differentiable Framework for Contact-Aware Robot Design. In Robotics: Science & Systems,
2021.

[8] M. Li, R. Antonova, D. Sadigh, and J. Bohg. Learning tool morphology for contact-rich
manipulation tasks with differentiable simulation. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 1859–1865. IEEE, 2023.

[9] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter. Jointly learning to construct and control
agents using deep reinforcement learning. In 2019 International Conference on Robotics and
Automation (ICRA), pages 9798–9805. IEEE, 2019.

[10] J. Hu, J. Whitman, M. Travers, and H. Choset. Modular robot design optimization with gen-
erative adversarial networks. In 2022 International Conference on Robotics and Automation
(ICRA), pages 4282–4288. IEEE, 2022.

[11] K. S. Luck, H. B. Amor, and R. Calandra. Data-efficient co-adaptation of morphology and
behaviour with deep reinforcement learning. In Conference on Robot Learning, pages 854–
869. PMLR, 2020.

[12] T. Chen, Z. He, and M. Ciocarlie. Hardware as Policy: Mechanical and Computational Co-
Optimization using Deep Reinforcement Learning. In Proceedings of the 2020 Conference on
Robot Learning, volume 155, pages 1158–1173. PMLR, 2021.

[13] P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. In Advances in
Neural Information Processing Systems, volume 34, pages 8780–8794, 2021.

9

https://doi.org/10.1109/ICRA48506.2021.9561457
https://www.proquest.com/scholarly-journals/passive-propulsion-vortex-wakes/docview/210909209/se-2?accountid=14026
https://www.proquest.com/scholarly-journals/passive-propulsion-vortex-wakes/docview/210909209/se-2?accountid=14026
http://ijr.sagepub.com/content/9/2/62.abstract
https://doi.org/10.1007/978-3-642-00616-6_5
https://doi.org/10.1007/978-3-642-00616-6_5
https://proceedings.mlr.press/v155/ha21b.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/8b1008098947ad59144c18a78337f937-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8b1008098947ad59144c18a78337f937-Paper-Conference.pdf
https://doi.org/10.15607/RSS.2021.XVII.008
https://doi.org/10.15607/RSS.2021.XVII.008
https://doi.org/10.1109/ICRA48891.2023.10161453
https://doi.org/10.1109/ICRA48891.2023.10161453
https://doi.org/10.1109/ICRA.2019.8793537
https://doi.org/10.1109/ICRA.2019.8793537
https://doi.org/10.1109/ICRA46639.2022.9812091
https://doi.org/10.1109/ICRA46639.2022.9812091
https://proceedings.mlr.press/v100/luck20a.html
https://proceedings.mlr.press/v100/luck20a.html
https://proceedings.mlr.press/v155/chen21a.html
https://proceedings.mlr.press/v155/chen21a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf

[14] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10(2-4):201–225,
1993.

[15] B. Aceituno-Cabezas, J. Ballester, and A. Rodriguez. Certified grasping. The International
Journal of Robotics Research, 42(4-5):249–262, 2023.

[16] M. T. Zhang and K. Goldberg. Gripper point contacts for part alignment. IEEE Transactions
on Robotics and Automation, 18(6):902–910, 2002.

[17] O. Taylor and A. Rodriguez. Optimal shape and motion planning for dynamic planar manipu-
lation. Autonomous Robots, 43:327–344, 2019.

[18] A. Wolniakowski, J. A. Jorgensen, K. Miatliuk, H. G. Petersen, and N. Kruger. Task and
context sensitive optimization of gripper design using dynamic grasp simulation. In 2015 20th
International Conference on Methods and Models in Automation and Robotics (MMAR), pages
29–34. IEEE, 2015.

[19] M. Kodnongbua, I. Good, Y. Lou, J. Lipton, and A. Schulz. Computational design of passive
grippers. ACM Transactions on Graphics (TOG), 41(4):2–12, 2022.

[20] H. T. Suh, M. Simchowitz, K. Zhang, T. Pang, and R. Tedrake. Pathologies and Challenges
of Using Differentiable Simulators in Policy Optimization for Contact-Rich Manipulation. In
ICRA 2022 Workshop: Reinforcement Learning for Contact-Rich Manipulation, 2022.

[21] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg, D. Rus, and W. Matusik.
Robogrammar: graph grammar for terrain-optimized robot design. ACM Transactions on
Graphics (TOG), 39(6):1–16, 2020.

[22] J. Xu, A. Spielberg, A. Zhao, D. Rus, and W. Matusik. Multi-objective graph heuristic search
for terrestrial robot design. In 2021 IEEE international conference on robotics and automation
(ICRA), pages 9863–9869. IEEE, 2021.

[23] J. Hu, J. Whitman, and H. Choset. GLSO: Grammar-guided Latent Space Optimization for
Sample-efficient Robot Design Automation. In Conference on Robot Learning, pages 1321–
1331. PMLR, 2023.

[24] J. Whitman, R. Bhirangi, M. Travers, and H. Choset. Modular robot design synthesis with
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 10418–10425, 2020.

[25] H. N. Fitter, A. B. Pandey, D. D. Patel, and J. M. Mistry. A review on approaches for handling
Bezier curves in CAD for manufacturing. Procedia Engineering, 97:1155–1166, 2014.

[26] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[28] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012.

[29] D. Hendrycks and T. Dietterich. Benchmarking Neural Network Robustness to Common Cor-
ruptions and Surface Variations. arXiv preprint arXiv:1807.01697, 2018.

[30] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and
V. Vanhoucke. Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household
Items, 2022.

10

https://doi.org/10.1007/BF01891840
https://doi.org/10.1177/02783649231155952
https://doi.org/10.1109/TRA.2002.805657
https://doi.org/10.1007/s10514-018-9773-y
https://doi.org/10.1007/s10514-018-9773-y
https://doi.org/10.1109/MMAR.2015.7283701
https://doi.org/10.1109/MMAR.2015.7283701
https://doi.org/10.1145/3528223.3530162
https://doi.org/10.1145/3528223.3530162
https://openreview.net/forum?id=kMB2WAfisY
https://openreview.net/forum?id=kMB2WAfisY
https://doi.org/10.1145/3414685.3417831
https://doi.org/10.1109/ICRA48506.2021.9561818
https://doi.org/10.1109/ICRA48506.2021.9561818
https://proceedings.mlr.press/v205/hu23c.html
https://proceedings.mlr.press/v205/hu23c.html
https://doi.org/10.1609/aaai.v34i06.6611
https://doi.org/10.1609/aaai.v34i06.6611
https://doi.org/10.1016/j.proeng.2014.12.394
https://doi.org/10.1016/j.proeng.2014.12.394
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.48550/arXiv.1807.01697
https://doi.org/10.48550/arXiv.1807.01697
https://arxiv.org/abs/2204.11918
https://arxiv.org/abs/2204.11918

[31] K. Zakka. Scanned Objects MuJoCo Models, 7 2022.

[32] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256–2265. PMLR, 2015.

[33] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention, pages 234–
241, 2015.

[35] J. Song, C. Meng, and S. Ermon. Denoising Diffusion Implicit Models. In International
Conference on Learning Representations, 2021.

[36] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[37] Y. Song and S. Ermon. Improved techniques for training score-based generative models. Ad-
vances in neural information processing systems, 33:12438–12448, 2020.

[38] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based
Generative Modeling through Stochastic Differential Equations. In International Conference
on Learning Representations, 2021.

[39] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of IEEE international conference
on evolutionary computation, pages 312–317. IEEE, 1996.

[40] A. Spielberg, A. Zhao, Y. Hu, T. Du, W. Matusik, and D. Rus. Learning-in-the-loop optimiza-
tion: End-to-end control and co-design of soft robots through learned deep latent representa-
tions. Advances in Neural Information Processing Systems, 32, 2019.

[41] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Ma-
tusik. Chainqueen: A real-time differentiable physical simulator for soft robotics. In 2019
International conference on robotics and automation (ICRA), pages 6265–6271. IEEE, 2019.

11

https://github.com/kevinzakka/mujoco_scanned_objects
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://openreview.net/forum?id=St1giarCHLP
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.neurips.cc/paper_files/paper/2019/file/438124b4c06f3a5caffab2c07863b617-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/438124b4c06f3a5caffab2c07863b617-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/438124b4c06f3a5caffab2c07863b617-Paper.pdf
https://doi.org/10.1109/ICRA.2019.8794333

Appendix

1 Manipulation tasks and metrics

We provide more details about the evaluation manipulation tasks, and introduce more metrics for
each task in this section.

Simple objectives:

• Shift up: Shift the object upward (along the negative x-axis in the manipulator frame) under all
initial poses. For evaluation, we grid sample 360 initial object orientations with positions in the
center of the manipulator, and close the manipulator around the object. The average success rate
after one closure S−x ↑ (%) is reported, where success is counted if the object is shifted more than
3mm along the negative x-axis. We additionally report continuous metrics including average delta
object translation along the x-axis after one closure ∆x ↓ (cm), and average final x coordinate of the
object after the 40th gripper closure x ↓ (cm). The metrics are averaged among the 360 interaction
trails with different initial object orientations. The motion objective is f (o,m, p) =−∆x(o,m, p),
then the design objective is aggregated from f (o,m, p) as F(m) = ∑o ∑p f (o,m, p).

• Shift down: Shift the object downward (along the positive x-axis) under all initial poses. Metrics
are average success rate of the object being shifted more than 3mm along the positive x-axis after
one closure S+x ↑ (%), average delta translation along the x-axis ∆x ↑ (cm), and average final x
coordinate x ↑ (cm). The motion objective is f (o,m, p) = ∆x(o,m, p).

• Shift left: Shift the object leftward (along the negative y-axis) under all initial poses. Metrics are
average success rate of the object being shifted more than 2mm along the negative y-axis after
one closure S−y ↑ (%), average delta translation along the y-axis ∆y ↓ (cm), and average final y
coordinate y ↓ (cm). The motion objective is f (o,m, p) =−∆y(o,m, p).

• Shift right: Shift the object rightward (along the positive y-axis) under all initial poses. Metrics
are average success rate of the object being shifted more than 2mm along the positive y-axis after
one closure S+y ↑ (%), average delta translation along the y-axis ∆y ↑ (cm), and average final y
coordinate y ↑ (cm). The motion objective is f (o,m, p) = ∆y(o,m, p).

• Rotate clockwise: Rotate the object clockwise (negative delta rotation around the z-axis) under
all initial poses. Metrics are average success rate of the object being rotated more than 0.03rad
around the negative z-axis after one closure S−

θ
↑ (%), average delta rotation around the z-axis

∆θ ↓ (°), and average final orientation θ ↓ (°). The motion objective is f (o,m, p) =−∆θ(o,m, p).
• Rotate counterclockwise: Rotate the object counterclockwise (positive delta rotation around the

z-axis) under all initial poses. Metrics are average success rate of the object being rotated more
than 0.03rad around the positive z-axis after one closure S+

θ
↑ (%), average delta rotation around

the z-axis ∆θ ↑ (°), and average final orientation θ ↑ (°). The motion objective is f (o,m, p) =
∆θ(o,m, p).

Complex objectives:

• Rotate: Rotate the object either clockwise or counterclockwise under all initial poses. The metrics
are average success rate S+−

θ
↑ (%), the average absolute value of delta rotation around the z-axis

|∆θ | ↓ (°), and the average absolute value of final orientation |θ | ↓ (°). The motion objective is
f (o,m, p) = [∆θ(o,m, p)]2.

• Rotate clockwise and shift up: Rotate the object clockwise and shift it up under all initial
poses. The metrics are average success rate S−

θ
&S−x ↑ (%), average delta rotation around the

z-axis ∆θ ↓ (°), average final orientation θ ↓ (°), average delta translation along the x-axis af-
ter one closure ∆x ↓ (cm), and average final x coordinate x ↓ (cm). The motion objective is
f (o,m, p) =−∆θ(o,m, p)−∆x(o,m, p).

• Rotate clockwise and shift left: Rotate the object clockwise and shift it left under all initial
poses. The metrics are average success rate S−

θ
&S−y ↑ (%), average delta rotation around the z-axis

∆θ ↓ (°), average final orientation θ ↓ (°), average delta translation along the y-axis ∆y ↓ (cm),
and average final y coordinate y ↓ (cm). The motion objective is f (o,m, p) = −∆θ(o,m, p)−
∆y(o,m, p).

12

Shift Up Shift Left Shift Left (3D) Rotate Counter Counter (3D)Shift Down Shift Down (3D)

O
ur

s
U

ng
ui

de
d

O
pt

.

Shift Up (3D)

Figure 8: Results on Simple Objectives. We generate manipulators for simple objectives that involve motion
along one dimension in SE2 space. Red and green object masks denote object configurations before and after
interaction respectively, overlaid with the image after closing in the manipulator. Compared with baseline
methods, finger shapes produced by our method achieve the task much more effectively.

• Convergence: Reorient the object towards a fixed final pose under a range of initial poses. The
design objective is encouraging the object to rotate in the positive direction when its initial ori-
entation is smaller than the target orientation, or else rotate in the negative direction. The motion
objective is:

f (o,m, p) =
{

∆θ(o,m, p) if θ ∈ [θtarget−π,θtarget]

−∆θ(o,m, p) if θ ∈ [θtarget,θtarget +π]
(5)

To determine the best target orientation θtarget, we first forward the dynamics network with the
manipulator shape initialization, object shape, and sampled initial object poses to get a pseudo
interaction profile. We detect the initial object orientation ranges that lead to consecutive positive
delta rotations followed by consecutive negative delta rotations as pseudo convergence ranges.
Then we select the largest pseudo convergence range’s corresponding convergence orientation
as θtarget. The metric is the maximum convergence range Rmax

c ↑ (°), the largest range of initial
orientations leading to θtarget within a small tolerance. We report the maximum convergence range
within the tolerance of 3°, 5°, and 10°, respectively.

2 Additional results

2.1 More metrics

We report results on all the manipulation tasks and metrics described above in Tab. 4, Tab. 5, Tab. 6,
and Tab. 7. The evaluation procedure is the same as described in the main paper, where we run each
approach 16 times per object-task pair and select the best performance, then average among test
objects. DGDM outperforms baselines consistently on both discrete metrics (e.g. average success
rate) and continuous metrics (e.g. delta object transformation and final transformation).

Table 4: Single Object Simple Objectives Evaluation
up down left right clock counter

S−x ↑ ∆x ↓ x ↓ S+x ↑ ∆x ↑ x ↑ S−y ↑ ∆y ↓ y ↓ S+y ↑ ∆y ↑ y ↑ S−
θ
↑ ∆θ ↓ θ ↓ S+

θ
↑ ∆θ ↑ θ ↑

2D
Unguided 56.8 -0.2 -1.3 82.1 0.3 1.9 82.9 -0.5 -1.2 80.4 0.5 1.4 46.9 -1.5 -9.5 58.5 2.3 11.1

Opt. 79.5 -0.4 -2.2 53.3 0.4 2.3 81.3 -0.6 -2.4 94.0 0.7 1.7 48.8 -2.9 -8.8 73.2 3.6 9.6
DGDM 88.2 -0.4 -3.1 92.0 0.5 3.7 96.7 -0.7 -2.4 97.7 0.8 2.1 60.8 -2.6 -12.3 72.0 3.6 14.2

3D
Unguided 43.0 -0.1 -0.6 43.8 0.1 1.0 80.4 -0.2 -1.2 87.9 0.2 0.9 41.2 -1.1 -4.9 33.5 0.5 2.7

Opt. 47.4 -0.1 -1.3 66.3 0.2 1.7 86.3 -0.3 -1.3 88.1 0.3 1.6 59.1 -1.9 -5.0 52.0 1.2 4.6
DGDM 81.5 -0.2 -1.6 75.1 0.2 1.7 95.1 -0.4 -1.8 97.2 0.4 1.9 69.9 -2.3 -7.7 65.0 2.2 6.3

13

Table 5: Single Object Complex Objectives Evaluation
rotate clock-up clock-left convergence

S+−
θ
↑ |∆θ | ↑ |θ | ↑ S−

θ
&S−x ↑ ∆θ ↓ θ ↓ ∆x ↓ x ↓ S−

θ
&S+y ↑ ∆θ ↓ θ ↓ ∆y ↓ y ↓ Rmax

c (3°) ↑ Rmax
c (5°) ↑ Rmax

c (10°) ↑

2D
Unguided 74.0 3.5 18.2 36.4 -1.5 -9.5 -0.2 -1.3 36.9 -1.5 -9.5 -0.5 -1.2 56.5 61.7 68.7

Opt. 78.9 4.5 18.9 29.3 -1.8 -4.2 -0.3 -1.0 49.4 -2.9 -9.0 -0.6 -2.1 69.6 73.7 82.1
DGDM 79.3 4.5 20.1 62.7 -3.3 -14.5 -0.4 -3.6 63.7 -3.2 -10.1 -0.7 -2.4 78.4 83 89.3

3D
Unguided 64.2 2.2 16.5 30.3 -1.1 -4.9 -0.1 -0.6 33.1 -0.5 -2.7 -0.2 -1.2 52.2 63.6 67.8

Opt. 66.9 2.4 15.7 29.2 -1.1 -2.7 -0.1 -0.5 37.7 -1.3 -3.3 -0.3 -1.0 50.3 60 72.3
DGDM 83.0 3.1 21.0 57.1 -2.4 -6.8 -0.2 -0.9 58.2 -2.9 -11.1 -0.5 -1.7 68.8 72.5 81.5

Table 6: Multi-object Simple Objectives Evaluation
up down left right clock counter

S−x ↑ ∆x ↓ x ↓ S+x ↑ ∆x ↑ x ↑ S−y ↑ ∆y ↓ y ↓ S+y ↑ ∆y ↑ y ↑ S−
θ
↑ ∆θ ↓ θ ↓ S+

θ
↑ ∆θ ↑ θ ↑

2D
Unguided 55.8 -0.2 -1.3 79.8 0.3 1.3 77.1 -0.5 -1.1 80.3 0.5 1.3 44.7 -1.5 -3.5 56.4 2.1 6.2

Opt. 78.6 -0.4 -1.0 50.3 0.3 1.0 79.2 -0.6 -1.0 93.8 0.7 1.7 46.1 -2.9 -7.8 71.4 3.5 7.4
DGDM 83.8 -0.4 -3.0 88.1 0.4 3.4 99.3 -0.7 -2.5 94.3 0.7 2.1 61.3 -2.4 -10.5 68.4 3.3 16.5

3D
Unguided 40.1 -0.1 -0.5 40.8 0.1 0.9 75.8 -0.2 -0.8 87.9 0.2 0.6 34.7 -0.5 -0.8 29.2 0.1 2.5

Opt. 42.4 -0.1 -0.4 66.4 0.2 1.0 77.9 -0.2 -0.4 86.6 0.3 0.8 40.3 -1.1 -1.9 39.2 1.9 3.5
DGDM 89.7 -0.2 -1.5 66.8 0.2 1.2 96.1 -0.5 -1.8 95.4 0.4 1.3 69.3 -2.0 -5.2 58.2 1.6 3.5

Table 7: Multi-object Complex Objectives Evaluation
rotate clock-up clock-left

S+−
θ
↑ |∆θ | ↑ |θ | ↑ S−

θ
&S−x ↑ ∆θ ↓ θ ↓ ∆x ↓ x ↓ S−

θ
&S+y ↑ ∆θ ↓ θ ↓ ∆y ↓ y ↓

2D
Unguided 68.3 3.2 13.4 35.2 -1.5 -3.5 -0.2 -0.8 35.2 -1.0 -3.0 -0.5 -1.0

Opt. 74.3 3.8 7.2 25.0 -1.4 -0.1 -0.1 -0.2 49.0 -2.9 -4.6 -0.4 -0.7
DGDM 78.4 4.2 15.8 62.4 -3.3 -10.6 -0.4 -3.6 63.8 -3.0 -6.3 -0.7 -2.4

3D
Unguided 61.7 2.1 15.8 29.2 -0.8 -0.4 -0.1 -0.5 25.2 0.1 2.5 -0.2 -0.7

Opt. 67.0 2.3 9.5 22.6 0.1 -0.1 -0.1 -0.3 34.3 -0.9 -1.2 -0.2 -0.5
DGDM 77.6 2.5 21.6 44.2 -1.6 -7.6 -0.2 -1.2 37.9 -2.3 -8.9 -0.5 -2.3

2.2 Results averaged over initializations

For each task and object shape, we generate manipulators with 16 different initializations. Aside
from reporting the best of 16 trails in the main paper, we additionally report the average performance
over all trails in Tab. 8. DGDM still significantly outperforms the baselines on metrics averaged over
both different initialization and objects.

Table 8: Single object evaluation, metrics are averaged over different initializations and objects.

Simple Objective Complex Objective

up do
w

n

le
ft

ri
gh

t

cl
oc

k

co
un

te
r

ro
ta

te

cl
oc

ku
p

cl
oc

kl
ef

t

co
nv

er
ge

Unguided 13.3 24.5 27.3 26.4 22.4 26.8 49.2 5.4 9.7 38.4°
Opt. (GD) 25.7 30.7 35.4 37.9 27.9 35.5 54.9 8.2 11.7 41.6°
CMA-ES 34.0 42.6 41.5 51.8 32.8 38.0 56.2 16.6 16.2 40.5°
DGDM 66.4 72.4 68.9 74.2 38.0 39.4 56.3 27.5 42.1 45.0°

2.3 Task progress over action horizon

We plot the progress of convergence over 40 open-close actions with manipulators generated by
baselines and DGDM in Fig. 9. The Unguided baseline converges the slowest, taking more than 30
steps. The Opt. baseline exhibits an unstable dip at the start and only achieves consistent alignment
with the target orientation after 30 steps. Manipulators generated by DGDM not only have larger
convergence ranges but also converge faster (with 10 steps) than the baselines.

14

Figure 9: Task progress of convergence over 40 open-close actions. The vertical axis is |θ −θtarget |, denoting
the absolute difference between the current object orientation with the target orientation.

3 More details on interaction profile

Interaction profile. The interaction profile between a manipulator and an object is defined as the
distribution of the delta pose change of the object caused by the manipulator-object interaction over
all possible initial poses of the object. Here, the manipulators-object interaction is a simple parallel
closing action, and the object pose is represented as 2D translation and rotation. For example, in
Fig. 10, when the object’s initial pose is (θ ,x,y), its delta pose after the interaction is (∆θ ,∆x,∆y),
which provide one data point on the interaction profile. Then, by uniformly sampling all initial
poses, we obtain the complete interact profile.

In our implementation, we use simulation to obtain the ground truth interaction profile and train
a dynamic network to infer the predicted interaction profile given any manipulator-object pair
without simulation.

Figure 10: Interaction profile.

Target interaction profile. A target interaction profile is defined for a specific task objective. For
example, the target interaction profile for the convergence task is shown in Fig. 11. This interaction
profile indicates the object should rotate in a positive direction when its initial orientation is smaller
than the convergence rotation; otherwise, it rotates in a negative direction. Tab. 9 shows examples
of other target interaction profiles for different design objectives.

15

Figure 11: Target interaction profile.

Target v.s. predicted interaction profile. The difference between the target interaction profile and
the predicted interaction profile (inferred by the dynamics network) provides the gradients for the
manipulator design (Fig. 12). Since the dynamics network is fully differentiable, we can get its
gradient with respect to the input manipulator geometry.

Figure 12: Target v.s. predicted interaction profile.

List of target interaction profile plots. We provide a comprehensive list of task objectives and their
corresponding interaction plots in Tab. 9. For visualization purposes, we simplify the horizontal axes
of interaction profile plots to include only initial orientations θ .

16

Table 9: Target interaction profile plots

Task Objective Function f (o,m, p) Interaction Profile

converge

{
∆θ(o,m, p) if θ ∈ [θtarget−π,θtarget]

−∆θ(o,m, p) if θ ∈ [θtarget,θtarget +π]

+ +

-

θtarget

 θ

Δθ

up −∆x(o,m, p)
-

Δx

θ

down ∆x(o,m, p)

+

Δx

θ

left −∆y(o,m, p)
-

Δy

θ

right ∆y(o,m, p)

+
Δy

θ

clock −∆θ(o,m, p)
-

θ

Δθ

counter ∆θ(o,m, p)

+ θ

Δθ

4 Discussions

Modeling Interactions instead of Modeling Contacts. Differentiable simulator [7, 8, 6, 40, 41]
is another popular choice for providing the gradient of design objective ∇mF , but suffers from two
major limitations. First, soft contact models, such as penalty-based methods used by Xu et al.,
are known to yield biased and high-variance gradients [20, 8]. Further, such gradients need to
be computed for each simulation timestep, which is computationally expensive for long-horizon
interactions. Instead of modeling individual contacts, our dynamics network learns to capture the
temporally extended finger-object interaction. It is trained on physically accurate simulated data,
avoiding the limitations associated with soft contacts. Moreover, our dynamics network generalizes
to novel objects and tasks at test time, allowing for constructing new objectives without extra data
generation or training.

17

	Introduction
	Related work
	Approach
	Interaction Profiles as Task Specification
	Dynamics Network
	Dynamics-Guided Diffusion Model

	Evaluation
	Experiment Results

	Conclusions

	Manipulation tasks and metrics
	Additional results
	More metrics
	Results averaged over initializations
	Task progress over action horizon

	More details on interaction profile
	Discussions

