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Abstract— Generative AI systems have shown impressive
capabilities in creating text, code, and images. Inspired by
the rich history of research in industrial Design for Assembly,
we introduce a novel problem: Generative Design-for-Robot-
Assembly (GDfRA). The task is to generate an assembly based
on a natural language prompt (e.g., “giraffe”) and an image
of available physical components, such as 3D-printed blocks.
The output is an assembly, a spatial arrangement of these
components, and instructions for a robot to build this assembly.
The output must 1) resemble the requested object and 2) be
reliably assembled by a 6 DoF robot arm with a suction gripper.
We then present Blox-Net, a GDfRA system that combines gen-
erative vision language models with well-established methods
in computer vision, simulation, perturbation analysis, motion
planning, and physical robot experimentation to solve a class of
GDfRA problems with minimal human supervision. Blox-Net
achieved a Top-1 accuracy of 63.5% in the semantic accuracy
of its designed assemblies. These designs, after automated
pertubation redesign, were reliably assembled by a robot,
achieving near-perfect success across 10 consecutive assembly
iterations with human intervention only during reset prior
to assembly. Surprisingly, this entire design process from the
textual word to reliable physical assembly is performed with
zero human intervention.

I. INTRODUCTION

Design-for-Assembly (DfA) has a long history dating
back to the start of the Industrial Revolution, where guns,
pocket watches, and clocks were designed with interchange-
able parts to facilitate mass production on human assembly
lines [1]. With the advent of industrial automation in the
latter half of the 20th century, DfA was expanded to take
into account the error tolerances of mechanical assembly
systems driven by mechanical cams and belts, and later
for robotic assembly systems, the latter known as Design-
for-Robot-Assembly (DfRA) [2]. DfRA is the process of
designing a product and robot assembly system together
to ensure feasibility, for example designing an injection
molded part along with a custom workcell for manipulating
it. These design systems were enhanced by the emergence
of Computer-Aided Design (CAD) and Computer-Aided-
Manufacturing (CAM) software that streamlined human vi-
sualization and evaluation of components and assemblies
using Finite Element Methods (FEM) and perturbation anal-
ysis [3–6]. Such systems help human designers visualize
and arrange mechanical components with realistic tolerances,
checking for potential jamming and wedging conditions [7].
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Fig. 1: Can a vision-language model generate designs suitable
for robot assembly? Blox-Net is a GDfRA system that produces
3D designs constructible by robots subject to physical material
constraints. (a) Starting with a phrase (e.g., ”giraffe”) and a set
of blocks, (b) Blox-Net iteratively prompts GPT-4o to generate
designs, using simulation to verify stability. (c) A physical robot
then assembles the design to test stability and constructibility, (d)
resulting in the successful assembly of the design.

All existing DfRA systems require human designers in the
loop [3, 4, 7]. One factor that is difficult for DfRA systems
to accurately model is the reliability of robot assembly,
which depends on the inherent uncertainty in perception,
control, and physics (eg, friction) [8–13]. This can to some
degree be modeled with simulation, but it is well-known
that 3D simulation systems struggle to accurately model
minute 3D deformations and collisions that occur during
robot grasping and effects such as deformations of robot
gripper and suction cups which can produce substantial errors
leading to assembly failures [14–18]. Therefore, physical
assembly trials are ideal for evaluation.

Recent advances in Generative AI systems have demon-
strated remarkable abilities to create novel texts, code, and
images [19–21]. Researchers are actively exploring “text-to-
video” [22–24] and “text-to-3D” [25–27] systems, where the
latter generates 3D mesh structures from textual descriptions
(and there are ongoing research efforts applying Gen AI for
eCAD design of chips [28]). This suggests that Generative
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Fig. 2: Overview of Blox-Net. We present a multi-stage framework for producing physically constructible models based on a user-
specified prompt. The Blox-Net pipeline begins with a natural language input and JSON detailing the available blocks. These parameters
are passed into a series of VLM prompts, beginning with a high-level overview (Describe), followed by requesting specific blocks to use
in construction (Plan) and a sequence to place them in (Order). Finally, the VLM generates the initial design and enters a feedback loop,
continuously receiving visual and stability feedback from the simulator. After generating 10 candidate designs, a separate VLM selects
the best structure through head-to-head image comparisons. The perturbation redesign phase then adjusts the selected structure to enhance
its physical constructability before it is assembled by a real robot.

AI may have potential for DfRA, and that if coupled with
a physical robot, it may be possible in certain cases to fully
automate the design cycle.

In this paper, we propose Blox-Net, a fully-implemented
generative DfRA (GDfRA) system that combines the se-
mantic and text generation capabilities of large language
models (LLM) with physical analysis from a simulator. Blox-
Net includes 3 phases: 1) A vision language model (VLM)
with customized iterative prompting to design a feasible 3D
arrangement of the available components – an assembly –
that approximates the shape of the desired object (eg “a
giraffe”); 2) simulation with perturbation analysis to evaluate
this assembly in terms of physical robot constructability and
to revise the assembly accordingly; 3) Computer vision,
motion planning, and control of a physical robot with a
camera to repeatedly, through an automated reset, construct
this assembly with the given components to automatically
evaluate physical assembly reliability.

This paper makes the following contributions:

1) Formulation of a novel problem, Generative Design-for-
Robot-Assembly (GDfRA).

2) Blox-Net, a system that combines prompting with a
physical robot, physics simulation, and motion planning
to automatically address a class of GDfRA problems
given available building blocks.

3) Results from experiments suggesting that Blox-Net can
produce assemblies that closely resemble the requested
object while being stable under gravity throughout the
construction process and feasible to be reliably assem-
bled by a robot arm. Starting from singulated objects,
Blox-Net achieves 99.2% success rates.

II. RELATED WORK

A. Design for Robot Assembly

The concept of Design for Assembly (DfA) was pioneered
by Geoffrey Boothroyd and Peter Dewhurst in the early
1980s [29], with Hitachi developing its Assemblability Eval-
uation Method (AEM) in 1986 [30]. These seminal works
laid the foundation for systematic approaches that follow
product design guidelines [31] facilitate facilitate efficient

assembly processes. As robotics automation in manufactur-
ing became prevalent, Design for Robot Assembly (DfRA)
emerged as an extension of DfA principles, specifically
addressing the unique capabilities and limitations of robotic
systems in assembly tasks [32, 33].

Design for Robot Assembly (DfRA) [32, 34–36] has
evolved significantly with the advent of Computer-Aided
Design (CAD) and Computer-Aided Manufacturing (CAM)
software, which expedite design and evaluation of compo-
nents and assemblies using Finite Element Methods and
perturbation analysis [3–7]. While these tools facilitate vi-
sualization and analysis of tolerances, stresses, and forces,
all existing DfRA systems require extensive human input [3,
4, 7]. A persistent challenge in DfRA is accurately mod-
eling assembly reliability, given the inherent uncertainties
in perception, control, and physics [8–13]. Simulation can
partially address this, but struggles to capture 3D deforma-
tions and collisions crucial to robot grasping, necessitating
iterative real-world testing and redesign [14–18, 37]. Recent
advancements leverage large language models (LLMs) [20,
38] for various aspects of design, including task planning,
robot code generation [39, 40], engineering documentation
understanding [41], and generating planar layouts or CAD
models [28, 42–44]. However, these methods primarily focus
on determining assembly sequences for fixed designs. In
contrast, we tackle both the design and execution aspects of
robot assembly, aiming to create physically feasible designs
for robotic assembly with minimal human supervision.

B. Text-to-Shape Generation

Semantic generation of 3D shapes and structures is a
long-standing problem in computer vision and computer
graphics [45]. Deep generative models have enabled a wide
range of approaches that learn to capture the distribution
of realistic 3D shapes, in the format of voxel maps [46],
meshes [47], point clouds [48], sign distance functions [49],
CAD models [50], and implicit representations [51]. A
growing number of approaches have also been proposed to
generate objects and environments to create digital twins or
curricula for robotic control and scale up learning [52–59].
With the advances of aligned text-image representations and
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Fig. 3: Diverse Design Generations: Left: Blox-Net generates a diverse set of candidate designs and uses the VLM (GPT 4o) to select
the most suitable one. Right: Blox-Net accurately generates a variety of structural designs, adhering to specific input constraints. A set of
10 designs can be generated in 81 seconds, and the selection of the best design takes an additional 60 seconds.

vision-language models, an increasing number of works have
aimed to generate semantically meaningful shapes specified
by natural language instructions [25, 60–62]. Unlike these
methods, based on the available physical building blocks,
Blox-Net generates 3D shapes by prompting an LLM (Chat-
GPT 4o [63]) and then generates a plan for assembling the
blocks to construct the desired shape.

C. Robotic Control with Foundation Models

Recent advancements in large pre-trained models, such as
large language models (LLMs) and vision-language models
(VLMs) [20, 64–70], have significantly impacted robotics
task planning by leveraging vast internet-scale data. These
models enable end-to-end learning through training on
robotics datasets [71–77] or allow LLMs to directly generate
actions or plans in text or code [76, 78–87]. Rather than
focusing on motion or waypoint planning, Blox-Net prompts
the VLM to generate a construction plan by determining
the poses of blocks to form semantically meaningful and
physically feasible structures, which are then assembled
using motion planning and force feedback control.

III. GDFRA PROBLEM

We formally define the problem of Generative Design for
Robotic Assembly (GDfRA). We consider the design of a 3D
structure that can be assembled with an industrial robot arm
(see Figure 1). The input is a word or phrase (e.g., “bridge”)
and an image of available components for assembly. The
objective for the GDfRA system is to design a structure
which is (1) ”recognizable” meaning the structure visually
resembles the provided text input and (2) ”constructible”
meaning the structure can be assembled by a robot.

IV. METHOD

We present Blox-Net, a system for GDfRA that assumes
(1) components are cuboids and cylinders and (2) compo-
nents are lying in stable poses within a reachable planar area.

Blox-Net includes three phases. In phase I (Figure 3),
Blox-Net prompts a VLM (GPT-4o [63]) to generate multiple
assembly designs, from which the VLM selects the top
candidate based on stability and visual fidelity. In phase
II (Section IV-B), the chosen assembly design undergoes

an iterative refinement process in a customized physics
simulator. This simulation-based approach applies controlled
perturbations to enhance the design’s constructability while
maintaining its core characteristics. In phase III (Section IV-
C), Blox-Net utilizes a robot arm equipped with a wrist-
mounted stereo camera and suction gripper to construct the
optimized design using 3D printed blocks. The assembly
is constructed on a tilt plate, which the robot actuates to
automatically reset the blocks back into a tray.

A. Phase I: VLM Design and Selection

Given the language description and a set of blocks with
known sizes and shapes, Blox-Net uses a VLM to gener-
ate candidate structure designs. Unlike existing text-to-3D
generation methods that produce unconstrained meshes [25,
61], Blox-Net generates 3D structures subject to the physical
constraints imposed by the available blocks. It prompts the
VLM to generate an assembly plan that specifies the 3D
locations and orientations for placing each block using the
available components (as shown in Fig. 3). To facilitate high-
quality generation, similar to DALL-E 3 [88], Blox-Net first
elaborates the prompt. For example, to construct a “giraffe”,
the VLM is prompted to give a concise, qualitative textual
description that conveys the key features of a giraffe by
highlighting the overall structure and proportions.

After prompt elaboration, the VLM is prompted for the
assembly plan. Specifically, the prompt includes the target
object (“giraffe”), the VLM’s elaboration response, and the
set of available blocks. The set of available blocks is en-
coded as JSON, which provides a structured, flexible format
familiar to VLM models. Based on these inputs, the VLM
is asked to explain each block’s role in the structure.

Once a high-level plan is generated, Blox-Net prompts
the VLM to produce an assembly plan, specifying the
rotation, position and color of objects. Instead of using
common rotation parametrizations like Euler angles, Blox-
Net instructs the VLM to rotate blocks by rearranging their
dimensions directly, thereby providing a more simple inter-
face for specifying orientation. Next, Blox-Net prompts the
VLM to output the (x, y) coordinates for block placement.
Limiting the specification to (x, y) coordinates rather than
(x, y, z) simplifies the action space and avoids potential



Fig. 4: Block Reorientation: The robot first places the block into a
90 degree angle bracket. Then, the block is regrasped on a different
face, achieving a 90 degree rotation.

issues with blocks being placed inside one another. Blocks
are placed by dropping them in the order.

To enhance stability and correct misplaced blocks, Blox-
Net performs iterative, simulation-in-the-loop prompting.
Each block’s placement is simulated by dropping it in sim-
ulation from above the structure. After each placement, the
system checks the block for stability. If instability is detected,
details such as the specific block that moved, the direction
of movement, and two orthographic views highlighting the
unstable block are included in a prompt sent back to the
VLM for correction. This process continues until all blocks
are stable or a maximum of two iterations is reached.

This full prompting pipeline is run in parallel, generating
10 design candidates. For each design, the VLM is queried
with a rendered image from the simulation, and provides a
rating from 1 to 5 based on how well the structure resembles
the intended design. The top-rated stable designs are then
paired in a head-to-head comparison, where two images are
shown to the VLM, and it selects the more recognizable
design. This process is repeated in a knockout format (Fig. 3)
until a final design is chosen.

B. Phase II: Perturbation-Based Redesign
In GDfRA, accounting for imprecise state estimation and

robot control is important to ensure robust assembly. The
VLM does not have knowledge about such tolerances, which
can result in collisions and misplaced blocks during assem-
bly. We thus introduce a perturbation-based redesign process.

The redesign process iterates through each of the blocks
and determines if adjustments are needed. A block will be
perturbed if it violates at least one of the following three
criterion: (1) the surface-to-surface distance to another block
is less than a specified collision threshold and the two blocks
overlap in the gravity-aligned axis (2) the block is already
in collision with another block; or (3) the block is unstable
at some nearby sampled point within a predefined radius.

For each block, Blox-Net samples points evenly along
regularly spaced, concentric circles centered at the block
nominal location and checks for stability and collision at
each point. The block position is updated to the average
of positions that are stable and free from collision. This
process is applied to all blocks in the structure until no
further adjustments are needed or each block has been visited
a predefined maximum number of times.

C. Phase III: Robot Assembly and Evaluation
To evaluate constructability, Blox-Net automates physical

assembly and evaluates the generated design on a robot. The

robot first moves to a predefined pose and captures a top-
down RGBD image of the blocks on a plastic tray. Blox-
Net uses SAM [89] to segment an RGB image and obtain
image masks. SAM segmentations include regions that do
not correspond to blocks. To filter out extraneous masks, we
generate a point cloud for each mask by deprojecting the
masked area from the depth image obtained from a stereo
camera [90]. we then discard masks that are outside the tray,
below a certain minimum area, or not circular or rectangular.

Blox-Net refines each mask to segment the top of each
block by fitting a RANSAC [91] plane to the pointcloud and
retaining only inliers. The block’s rotation is determined by
fitting the tightest oriented bounding box to the refined mask.
The block’s center is the mean of the points in the filtered
point cloud, with the x and y dimensions measured from
the point cloud and the z dimension derived from its height
relative to the tray base.

Upon determining the size, shape, position, and dimen-
sions for each block, Blox-Net can obtain a new plan through
the design generation and perturbation-based redesign pro-
cess (Section IV-A and Section IV-B), or construct the target
object based on a previously generated plan. Blocks may
require rotations about their x or y axis to align with the
pose used in the plan. This rotation is facilitated by placing
the block in a 90-degree angle bracket and regrasping the
block from a different side (Fig. 4). After reorientation, the
robot captures a new top-down image and all block positions,
rotations, shapes, and dimensions are recomputed via the
aforementioned pipeline.

The assembly process begins after all blocks are properly
oriented. Each block is grasped at its centroid, rotated to the
planned orientation, and placed at the location specified in
the design. Force feedback control is used for both grasping
and placing blocks: during a grasp, the robot lowers onto the
block until a force is detected; similarly, during placement,
it descends and releases the block once a force is sensed.

To enable efficient testing and design validation, we design
an automatic reset. After completing the full assembly, the
robot arm captures an image. Then, the robot presses down
on the tilt plate, dumping the blocks back into the tray. This
resets the scene for subsequent trials.

V. EXPERIMENTS

To evaluate how well the generated structures by Blox-
Net satisfy the GDfRA objective, we assess both the seman-
tic recognizability of the designs (in Section V-A), which
refers to how well the designs semantically align with the
prompts, and their constructability (in Section V-B), which
refers to how reliably they can be constructed by a real
robot. Additionally, we evaluate the effectiveness of the
perturbation redesign (in Section V-C). To create a candidate
objects list for evaluation, we prompt GPT-4o to generate
a list of 200 objects spanning categories such as furniture,
alphabet letters, architecture, and animals. We run Blox-
Net’s design generation (Section IV-A) on all objects using
a fixed set of block shapes and dimensions. We evaluate
semantic recognizability on all 200 designs and evaluate
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Fig. 5: Task Execution: We present Blox-Net VLM generated designs assembled by a robot paired with simulation renderings

N Top-1 Accuracy Avg. Ranking Relative Ranking

5 63.5% 1.7 34.0%
10 48.5% 2.92 29.1%
15 46.0% 3.68 24.5%
20 41.5% 5.05 25.3%

TABLE I: VLM-Based Design Recognizability: Top-1 accuracy,
average ranking, and relative ranking based on GPT-4o responses
averaged across all 200 objects. Relative ranking is reported as the
average ranking divided by N where N is the number of labels.

constructability on a representative subset of 11 designs,
which showcase the capabilities and limitations of Blox-
Net, using a physical robot. Additionally, we evaluate the
effectiveness of perturbation redesign on 5 designs.

A. Semantic Recognizability

To measure how well the generated structure resembles the
requested language description, we design an experiment us-
ing GPT-4o as an evaluator to assess the semantic distinctive-
ness and accuracy of each design, following methodologies
similar to those used in VLM answer scoring [92–94]. In
this experiment, we use a set of N object labels, where N
includes the correct label alongside N−1 randomly selected
distractor labels from the pool of 200 objects. We provide
GPT-4o with a rendered image of the generated assembly and
the N labels in random order, and task the VLM with ranking
these labels based on how well each one matches the image.
We report the percentage of correct Top-1 predictions, and
for imperfect guesses, we analyze the average ranking of the
correct label within GPT-4o’s ordered list, (where a ranking
of 1 is best). Additionally, we report the average ranking
relative to N , with results presented for Top-1 accuracy and
average ranking for N=5, 10, 15, 20.

B. Constructability

We measure constructability on a real robot over 10 trials
on 6 designs selected to highlight diversity. For each trial,
we record the % of blocks correctly positioned at the time
of placement, and the % of trials where the structure is
fully successfully assembled. These experiments incorporate
automated reset, block reorientation, and assembly fully end-
to-end. To assess the system’s autonomy, we track the aver-
age percentage of blocks per trial which require intervention
during the reset phase, where an intervention is counted for
each block moved. In failure cases after reset where blocks
occlude each other, are not adequately separated, or fall out
of the tray, blocks are repositioned and placed back in their
same stable pose. In cases where the robot fails to regrasp
a block during reorientation, the block is placed back in

Object % of Blocks Adjusted % Correct % of Assemblies
(# of Blocks) During Reset Phase Blocks Placed Completed

Filament Roll (3) 14% 100% 100%
Giraffe (9) 28% 100% 100%
Lighthouse (7) 18% 100% 100%
Letter-U (3) 7% 100% 100%
Shelf (10) 34% 100% 100%
Table (5) 11% 98% 90%

TABLE II: Robot Assembly and Reset: The table presents the
robot assembly results for six designs, each assembled by the
robot over 10 trials following a reset, during which all blocks are
singulated and reoriented on a plastic tray. Human intervention
occurred only during the reset phase to de-stack, singulate, and
reorient blocks.

the stable pose corresponding to its final stable pose in the
structure. Human interventions are only performed during
resetting but not during the assembly process.

C. Perturbation Redesign Ablation

We evaluate the effect of perturbation redesign (Sec-
tion IV-B) on construction success. We conduct experiments
on 5 objects, each assembled 10 times with and without
perturbation redesign. Each trial begins with all blocks singu-
lated and in their correct stable pose. This isolates the effect
of perturbation redesign by eliminating influence from prior
assembly states. Assembly is performed fully autonomously.
We report the percentage of blocks correctly placed at the
time of their placement, the average percentage of blocks
in the correct location at the end of each trial, and the
percentage of trials where the structure is fully completed.

D. Implementation Details

Blox-Net is implemented with the following components:
GPT-4o, PyBullet, UR5e robot arm, Robotiq suction gripper,
Zed Mini Stereo Camera, and 3D printed cuboidal and
cylindrical blocks. We use PyBullet as a simulator and
define simulation parameters as a uniform object density
of 1000 kg/m3, lateral friction coefficient of 0.5, spinning
friction coefficient of 0.2, gravity of −9.81m/s2. A block is
measured as unstable if after 500 simulation steps at 240Hz
the block’s position deviates by more than 1cm or is rotated
by more than .1 radians from its starting position.

During perturbation redesign, Blox-Net samples 8 points
from each of 10 concentric circles with radii from 1mm to
15mm and each block is perturbed a maximum of 10 times.
Blox-Net filters masks by shape by fitting a minimum area
bounding rectangle and minimum bounding circle to each
mask. Masks are discarded if their area is less than 80% of
the areas of both bounding shapes.



Object % Correct Blocks Placed % Correct in End State % Full Completion
✗ ✓ ✗ ✓ ✗ ✓

Ceiling Fan (7) 66.7% 100% 91.0% 100% 40% 100%
Sandbox (5) 50.0% 96% 50.0% 96% 20% 80%
Shark (6) 75.0% 100% 76.7% 100% 40% 100%
Sofa (4) 72.5% 100% 72.5% 100% 30% 100%
Taj Mahal (10) 71.0% 100% 72.0% 100% 10% 100%

Average 67.1% 99.2% 72.4% 99.2% 28.0% 96.0%

TABLE III: Perturbation Redesign: Each object is followed by
the number of blocks in the design enclosed in parenthesis. We
run each design for 10 iterations. ✗ indicates experiments without
perturbation redesign and ✓ indicates experiments with perturbation
redesign. % Correct Blocks Placed: the ratio of blocks that were
placed correctly (determined by a group) to the whole structure.
% Correct In End State: the ratio of blocks that remain in their
correct pose at the end (blocks may be knocked down by later
placements). % Full Completion: the ratio of overall success (0
or 1 for the whole structure per run over all 10 runs). We observe
a significant performance decrease across all objects in all metrics
when constructing without perturbation redesign, demonstrating its
impact on design success.

Fig. 6: VLM Generation Failures Blox-Net’s design generation
occasionally produces designs that: include unavailable blocks
(Rook Chess Piece), incorrectly orient blocks (Bicycle’s Handle-
bar), or fail to account for gravity (Letter H).

E. Quantitative Results

Semantic Recognizability: We present results in Table I.
Results from the evaluation of BloxNet’s designs using GPT-
4o as an evaluator suggest that the generated designs closely
align with the correct category semantics as recognized by
GPT-4o. Notably, with N = 5 labels, the model achieves a
Top-1 accuracy of 63.5%, demonstrating a consistent corre-
spondence between the generated designs and the intended
prompts. Importantly, even with larger label sets, the model
maintains a reasonable average ranking, with the correct
label placed consistently near the top. This suggests that the
generated designs remain recognizable, even among a large
pool of designs.
Constructability: Results are in Table II. All designs are
reliably assembled by the robot without human intervention
during assembly. Five of six designs achieve a perfect
assembly completion rate, and all designs achieve a 98%+
placement success rate, highlighting Blox-Net’s ability to
assemble complex structures. Human interventions, which
occur only during the reset phase, are sometimes needed
to singulate or reorient blocks. Complex structures, such
as the Giraffe (9 blocks) or shelf (10 blocks), have more
human reset interventions due to an increasing likelihood of
overlapping, non-singulated, or misoriented blocks.
Perturbation Redesign Ablation Results are summarized
in Table III. Perturbation redesign greatly improves all three
metrics across all 5 designs to near-perfect. The percentage

Fig. 7: Perturbation Redesign Ablation Failures Omitting per-
turbation redesign from the Blox-Net leads to a significant increase
in physical construction failures. Small inaccuracies in block place-
ment result in collisions, fallen blocks, and structural collapses.

of correctly placed blocks and the percentage of correctness
in the end state are similar for all objects except the ceiling
fan. While incorrect block placements typically lead to errors
in the final structure, later block placements sometimes
correct these errors. Perturbation redesign improves the full
completion success rate by an average of 4x. Overall, per-
turbation redesign significantly enhances the robustness of
the assembly process by accommodating slight imprecisions,
leading to more reliable and accurate final structures across
a variety of designs.

VI. LIMITATIONS AND CONCLUSION

While Blox-Net shows promising results in constrained
3D structure generation, it is limited to non-deformable
cuboid and cylinder blocks, restricting geometric diversity
and reducing Blox-Net’s ability to represent complex shapes.
Many assembly designs are still not clearly recognizable,
likely due in part to these block limitations. The system uses
only a suction-based gripper, without accounting for gripper
width or slanted surfaces, and sometimes requires human
intervention during resetting, reducing assembly efficacy.

This paper introduces Blox-Net, a novel system addressing
the Generative Design-for-Robot-Assembly problem using a
three-phase approach: creating the initial designs by prompt-
ing a vision language model, conducting simulation-based
analysis for constructability, and utilizing a physical robot for
assembly evaluation. Experiment results suggest that Blox-
Net can bridge the gap between abstract design concepts and
robot-executable assemblies. Remarkably, five Blox-Net as-
sembly designs, each using 3 to 10 blocks and scoring high in
recognizability, were successfully assembled 10 consecutive
times by the robot without any human intervention.
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