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Abstract: This work adapts and integrates existing machine vision techniques to
estimate the 6DoF pose of sub-centimeter parts for high-mix, low-volume assem-
bly lines, focusing on the challenges of accurate positioning in real-world scenar-
ios. In this system, the 3D models of each part are input to a BlenderProc2 render-
ing engine to generate a physically- and photometrically-realistic synthetic image
dataset. Synthetic images are used to train a Mask R-CNN model for segmenting
individual part instances in a scene, with automatically-generated instance mask
labels, eliminating the need for manual labeling. Instance segmentation enables
part selection for assembly when multiple parts are present. Additionally, a PVNet
model is trained on cropped images of each part instance to estimate their posi-
tions and orientations. An additional pose refinement step adjusts PVNet pose
estimates by aligning the orientation to the nearest physically-stable configuration
on a planar surface and refining the translation using calibrated object-to-camera
distances from the workspace. To evaluate robustness, noise is injected into the
keypoint detection stage of the PVNet model in an ablation study to assess the
impact of sensor noise on pose estimation. Real robot pick-and-place experiments
demonstrate the system performance.

Keywords: Synthetic Data, Instance Segmentation, Pose Estimation, Robotic
Manipulation, Industrial Assembly, Sim2Real Transfer

1 Introduction

The objective of this work is to estimate the 6DoF pose of three sub-centimeter industrial parts–an
inserted part, a main part, and a top part–which are assembled to form a USB Type-C connector. Au-
tomating assembly with customized machinery is not cost-effective in low-volume production. A re-
liable and cost-effective part pose estimation pipeline is essential to enable high-precision, sub-mm
tolerance assembly by unsupervised industrial robots on high-mix, low-volume production lines [1].
Previous work investigates small-scale part assembly with robot arms in simulation, however it as-
sumes known object poses prior to picking [2]. This work presents an image-based system that
localizes and estimates the pose of industrial parts, shown in Figure 1, from a tabletop spread of
components for picking and assembly. The system assumes that parts are arranged in an unstacked,
planar configuration on a flat surface, without any overlap or occlusions. The system first identifies
different categories of parts and their unique instances in a scene, then estimates the pose of each
part. These pose estimates can then be used by a robot system for picking and assembly.

This work addresses two challenges in developing pose estimation systems for automated sub-cm
robotic picking: the requirement of large amounts of accurate object pose annotations for training
pose estimators, and the requirement of accurate model inference for robotic picking. To respond to
these challenges, this work makes the following contributions:
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1. This work introduces a data generation pipeline that produces a photorealistic, labeled syn-
thetic image dataset for training both an object instance segmentation model and a pose
estimation model. Using a physics-based rendering engine, the pipeline simulates object
CAD models in physically stable configurations within scenes that closely replicate real-
world picking environments.

2. A method of object instance segmentation and a method of obejct pose estimation are
deployed in series to localize and predict the pose of three types of sub-cm industrial parts
from a photometrically challenging scene containing many part instances with wide pose
distributions.

3. The sensitivity of pose estimation to pixel noise and object distance is analyzed in an abla-
tion study to characterize admissible pixel noise and object-to-camera distance limits.

4. The pose estimation system–learned entirely on synthetic data–is directly applied to picking
real parts with real robot arms.

5. Source code is openly released at github.com/Hammania689/sub-cm-part-pose.

Figure 1: The CAD models of three sub-centimeter, symmetric parts are inputs to the learned pose
estimation system.

2 Related Work

Object instance information is a prerequisite for many pose estimation methods [3, 4, 5]. Object
instance detection localizes regions of an image containing object instances, while instance segmen-
tation classifies image pixels as belonging to specific object instances. Instance detection predicts
bounding box regions and class labels within the image [6] while instance segmentation may or
may not use the context of the object class to predict masks [7]. It is common to simultaneously
predict object classes, bounding boxes, and instance masks from RGB images. One method which
does this is Mask R-CNN, a model trained to predict instance segmentation mask and class labels
for each object in an image [8]. More recent convolutional neural network-based methods [9] and
transformer-based methods [10, 11] also offer promising performance improvements over the Mask
R-CNN baseline.

A drawback of using Mask R-CNN for instance segmentation is the requirement of large quantities
of high-quality data with corresponding instance class and mask labels. Labeling can be challeng-

Figure 2: BlenderProc2 renders photorealistic, physics-based scene images (left) that closely resem-
ble real-world scenes captured with a Basler acA5472-17uc camera with a 25 mm lens (right). While
the synthetic image achieves similar detail, minor discrepancies remain, such as subtle differences
in lighting conditions, slightly reduced noise levels, and slight variations in the reflective properties
of certain parts.
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ing due to partial occlusion, scene clutter, extreme lighting variations, a large variety of object
poses, and a large number of instances per image [12, 13, 14, 15]. Furthermore, texture-less, sym-
metric, and reflective objects present additional photometric challenges during labeling and infer-
ence [16, 17, 18, 19, 20, 21, 22]. Photorealistic synthetic image generation with physics-based CAD
model rendering is a promising alternative to collecting a large number of real image and manually
annotating them [23].

Several approaches estimate 6DoF pose. One approach estimates object pose directly from RGB
images for deployment in systems using low-cost camera sensors [24]. Another method for image-
only 6DoF pose estimation is PoseCNN [25]. The PoseCNN method estimates the translation of an
object by finding its pixel center in the image, estimating its distance from the camera, and regressing
object features within a bounding box representation to a quaternion representation. The RCVPose
method also estimates object 6DoF pose from images [26]. The RCVPose method learns to estimate
the distance between a 3D keypoint and the 3D scene point corresponding to each image pixel. For
each pixel, a sphere of radius equal to this regressed distance is centered at each corresponding 3D
scene point. The 3D keypoint locations are estimated, and execution for at least 3 keypoints allows
the unique recovery of the 6DoF object pose.

A second approach to pose estimation incorporates depth information. One existing method esti-
mates pose directly from 3D depth maps and uses object CAD model alignment for training, by-
passing incorporating image information entirely [27]. The OVE6D model uses a depth image, an
object mask, and a viewpoint codebook built off of varying viewpoints of object CAD models to
predict object poses [28]. These depth-based methods offering promising results, but may struggle
to estimate the pose of sub-cm parts. The depth accuracy for off-the-shelf depth sensors positioned
1 m away from an object–a typical distance in robot work cells–may be 1% of the distance to the
object (i.e., 1 cm) [29]. This depth accuracy may not meet requirements for precise pose estimation
of small-scale parts.

Other pose estimation approaches use data beyond the single-frame image and depth information
provided by cameras. One method performs in-hand manipulation to estimate object pose through
combination of image and tactile information to reduce pose estimation uncertainty [30]. Other
methods perform 6DoF pose tracking which is especially useful when the object intermittently
leaves the view of the camera or is occluded [31, 32].

This paper uses the PVNet method, a supervised deep learning method to estimate poses from RGB
images [33]. The PVNet method performs two tasks: semantic segmentation and vector-field predic-
tion. For each pixel, it outputs an instance mask linking it to an object and a unit vector indicating the
direction from the pixel to a keypoint on the object. Based on the instance masks and unit vectors,
keypoint hypotheses are generated using a RANSAC-based voting scheme. A custom PnP solver is
also proposed that takes a subset of the predicted 2D keypoints and known set of 3D keypoints from
training to estimate the 6D pose of the object.

3 Methodology

This work uses BlenderProc2 to generate a photorealistic scene dataset with BlenderProc2 to train
a Mask R-CNN instance segmentation model. Part instance crops are input to PVNet for part pose
estimation. The pose estimation pipeline is shown in Figure 3.

In the BlenderProc2 rendering engine, each object is initialized in random poses within a simulated
environment and allowed to fall onto a planar surface. Once stationary, the final pose of the i-th part
is labeled as a transformation matrix in the camera frame as

Ti =

[
Ri ti
0 1

]
, (1)

where ti ∈ R3×1 is the true ith translation vector and Ri ∈ R3×3 is the true ith rotation matrix. Each
part in each scene image is also labeled with an instance segmentation mask, 2D and 3D keypoint
coordinates selected with the Farthest Point Sampling (FPS) algorithm, and 2D vectors between
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Figure 3: The image-based pose estimation system generates a photorealistic scene dataset with
BlenderProc2 to train a Mask R-CNN instance segmentation model. Part instance crops are input to
PVNet for 2D-to-3D keypoint correspondence and Perspective-n-Point estimation of part pose. The
estimated poses are refined by aligning the orientation to the nearest stable pose and adjusting the
translation based on calibrated object-to-camera distances from the workspace.

Figure 4: The BlenderProc2 physics-based engine renders part CAD models in replicated real-world
scenes. This enables generation of synthetic image datasets with known part instance segmentation
masks, 2D and 3D keypoint coordinates, and 2D vectors between the center and keypoints.

the center and keypoints as shown in Figure 4. Rendering is repeated until the dataset includes N
instances of each part across all rendered images. Each rendered part has a set of possible stable pose
candidates when the part is in contact with a planar surface. Orientations with greater contact area
between the part and the planar surface appear with higher probability. The distribution of stable
pose candidates for each part is shown in Figure 5.

A Mask R-CNN model is trained on the synthetic images and instance mask labels to predict the
class, mask, and bounding box for each part instance [34]. The center pixel of the part instance
bounding box is used to crop an image patch input to PVNet. A PVNet model is trained for each
part class to predict pixel-wise unit vectors from the object center pointing to the keypoints used
for keypoint localization. Keypoints are used in 2D-to-3D correspondence matching and solving for
pose using the Perspective-n-Point (PnP) algorithm. The predicted pose for each part instance, T̂i,
is a transformation matrix in the camera frame,

T̂i =

[
R̂i t̂i
0 1

]
, (2)

The PVNet model provides an initial pose estimate based on the cropped image patch. The orienta-
tion estimates of PVNet are refined by assuming the part instance lies on a table in a stable planar
orientation. The possible stable orientations used for pose refinement are the same as those discov-
ered by BlenderProc2 and shown in Figure 5. The z-component of the position for each part instance
is also replaced with the part center-to-camera distance known obtained from extrinsic calibration.
The refined part pose, T̂r

i , is

T̂r
i =

[
R̂r

i t̂ri
0 1

]
, (3)

where R̂r
i is the refined orientation estimate and t̂ri is the refined position estimate.
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Figure 5: Each rendered part has a set of possible physically-stable pose candidates given contact
between the part and a planar surface. Orientations with greater contact area between the part and
the planar surface appear with higher probability. Since the parts are symmetric about the y-axis,
the possible stable orientations are shown here as the roll angles (rotation about the x-axis).

4 Experiments

In experiments analyzing the accuracy of part instance segmentation in the pipeline, instance classes
were predicted with high precision and recall and high instance mask intersection as compared to
ground truth labels (Section 4.1). In experiments analyzing part pose estimation, part positions were
estimated within 1mm of planar translation error and 3mm vertical translation error using position
refinement and within < 5o of angular error (Section 4.2). An ablation study was performed to
highlight the relationship between pixel noise and object-to-camera distance on pose estimation
performance (Section 4.3), and the learned pose estimation system was deployed in a real robot
picking workcell as an enabling step for robotic assembly (Section 4.4).

The BlenderProc2 engine was used to generate 10,000 images in 14 hours at 2208 × 1242 resolu-
tion for training Mask R-CNN. The BlenderProc2 engine was used to generate three part-specific
datasets, each containing 20,000 images at 256 × 256 resolution, in 17 hours. The Mask R-CNN
model was trained for four hours with 5 epochs and a batch size of 1. The PVNet models were
trained for a total of 18 hours, and each model was trained for 250 epochs with a batch size of 32.
Dataset generation and training was completed on a workstation with two NVIDIA RTX 3090 GPUs
and a 24-core AMD Ryzen Threadripper 3960x CPU.

4.1 Instance Segmentation Evaluation

Mask R-CNN was evaluated on a test set of 200 synthetic images generated with BlenderProcv2.
The lighting, camera distance, object poses, scene backgrounds of these images are different from
the training data. This was done to get a proxy on how robust the model is to variations that may
occur in real environments. The quantitative results on this synthetic test set are summarized in
Table 1, while qualitative results on real images are shown in Figure 7.

The mean Intersection over Union, or mIoU, metric is a common choice for evaluating the inference
performance of semantic segmentation models. While this metric does not distinguish between
instances, it is still useful for quantifying average pixel-wise overlap between predicted and ground
truth segmentation masks. The mIoU is

mIoU =
1

N

N∑
i=1

area of intersectioni
area of unioni

, (4)

where N is the total number of classes. A detection is classified as a True Positive, TP , if the class
label is correctly predicted and the instance mask exceeds a specified IoU threshold. A detection
is classified as a False Positive, FP , if its instance mask does not correspond to any ground truth
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instance. A detection is classified as a False Negative, FN , if the model does not detect any instance
where one exists in the ground truth label.

For instance-level evaluation, Average Precision, AP, and Average Recall, AR, are each defined as

AP =
1

N

N∑
i=1

TPi

TPi + FPi
(5)

AR =
1

N

N∑
i=1

TPi

TPi + FNi
. (6)

Table 1: Mask R-CNN Instance Segmentation Evaluation
Metric Inserted Part Main Part Top Part Overall
mIoU 89.7 (±20.7) 80.4 (±29.8) 91.6 (±12.8) 87.5 (±22.2)

AP90 95.2 73.0 89.8 86.0
AR90 96.4 83.0 92.9 90.7

Number of Instances 995 980 998 3158

4.2 Pose Estimation Evaluation

Table 2 presents the raw output and refined output of PVNet evaluated on a synthetic testing dataset
consisting of 2,000 images, where translation and angular error are used to evaluate the accuracy of
the 6DoF pose estimation. Sample predictions on real images are shown in Figure 8, demonstrat-
ing the model’s ability to transfer from synthetic training data to real-world scenarios, though some
failure cases can occur as illustrated in Figure 9. Since the object pose is expressed as an orien-
tation and a position, two error metrics are used to quantitatively evaluate the estimate. Assembly
of sub-centimeter components with tight insertion tolerances requires accurate pose estimates for
picking and assembly. The translation error quantifies the difference between the estimated and true
positions in Cartesian space. The translation error is calculated as the L1 norm, which is the sum of
the absolute differences between the predicted translation, t̂i = (x̂i, ŷi, ẑi), and the true translation,
ti = (xi, yi, zi). The translation errors for each dimension are

ex,i =| x̂i − xi |
ey,i =| ŷi − yi |
ez,i =| ẑi − zi |

. (7)

The angular error, eθ,i, measures the deviation in orientation between the predicted rotation, R̂i, and
true rotation, Ri, as

eθ,i = cos−1

(
tr(R⊺

i R̂i)− 1

2

)
. (8)

One challenge with evaluation is the difficulty of estimating depth using RGB images which lack di-
rect depth information. While the refinement step improves both depth and orientation accuracy, er-
rors can arise from the camera-to-table surface extrinsic calibration used to replace the z-component
with the part center-to-camera distance.

4.3 Sensitivity of PnP Solver

In PVNet, a set of 2D keypoints are estimated from RGB images. The object pose is determined
by establishing 2D-3D correspondences between the localized keypoints in an image and a CAD
model and minimizing keypoint reprojection errors—typically solved using the PnP algorithm. Op-
timization with PnP is highly sensitive to keypoint detection accuracy. Small pixel shifts or errors in
keypoint coordinates can lead to significant pose estimation errors. The degree of this sensitivity is
also influenced by the focal length of the sensor, the distance between the object and the sensor, and
the size of the object. An ablation study was conducted to examine the relationship between pose
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Table 2: PVNet Evaluation
Metric Error Type Inserted Part Main Part Top Part Average

Translation
error (mm)

ex 0.57 (±0.44) 0.62 (±0.48) 0.99 (±0.75) 0.73 (±0.56)

ey 0.56 (±0.44) 0.59 (±0.46) 0.98 (±0.75) 0.71 (±0.55)

ez 62.01 (±22.19) 64.24 (±20.15) 105.41 (±28.53) 77.22 (±23.62)

ez (refined) 1.02 (±2.75) 0.97 (±0.73) 1.29 (±0.90) 1.09 (±1.46)

Angular
error (°)

eθ 3.39 (±1.65) 3.85 (±1.79) 3.09 (±1.88) 3.44 (±1.77)

eθ (refined) 2.52 (±0.27) 2.60 (±0.50) 2.55 (±0.33) 2.56 (±0.37)

Note: All values are in the format: mean (µ) ± standard deviation (σ).

prediction errors and keypoint noise, ϵ, for varying average object-to-camera distances, µd, where
µd is

µd =
1

M

m∑
i=1

di. (9)

Different levels of noise were introduced to the pixel coordinates of eight pre-defined keypoints in
the dataset. The perturbed keypoints and the camera intrinsics were input to an Efficient Perspective-
n-Point (EPnP) solver to estimate the object pose relative to the camera [35]. The results of the
ablation study, shown in Figure 6, indicate ex and ey are relatively insensitive to ϵ. However, ez
increases significantly with increased ϵ, especially for large µd. Similarly, eθ increases exponentially
with ϵ and is further amplified at large µd.

This finding underscores the importance of precise keypoint localization in achieving accurate
depth and orientation estimates when using 2D-3D correspondence-based methods that rely on PnP
solvers. In practical applications, it suggests the potential benefit of incorporating depth information
alongside high-resolution imaging, robust keypoint detection, or effective noise-reduction strategies
to enhance 3D pose accuracy, especially in setups with greater object-to-camera distances.

Figure 6: These plots illustrate the relationship between the translation prediction errors ex (left), ey
(center left), ez (center right), and angular prediction error eθ (right) as a function of ϵ for varying µd.
Planar translation errors (ex and ey) are relatively insensitive to ϵ, but the non-planar translation error
(ez) grows with ϵ, with larger µd exacerbating the error. Rotation error (eθ) grows exponentially with
increasing ϵ, amplified at greater µd.

4.4 Robot Demo

This pose estimation system is deployed in a real robot workspace equipped with a Universal Robots
UR5e robot arm, Robotiq Hand-E gripper, and Basler acA5472-17uc camera with a 25 mm lens.
The task is to pick and place an inserted part, a main part, and a top part from random initial
configurations on a tagboard surface. With a scene configuration similar to the synthetic scene
configured in BlenderProc2 for image data generation, the camera was mounted on a stand in the
workspace and captured the workspace from a top-down perspective. Figure 7 shows Mask R-CNN
inference performance for instance segmentation of each part category in real scene images. Figure 8
shows PVNet inference performance for pose estimation of each part category in real scene image
crops. Figure 9 shows how incorrect instance segmentation can lead to part pose estimation failures
within the system. Figure 10 demonstrates the full instance segmentation, pose estimation, and robot
picking system for four randomly configured inserted parts1.

1A demo video is available at github.com/Hammania689/sub-cm-part-pose
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(a)

(b)

Figure 7: This figures shows Mask R-CNN instance segmentation results on real images. (a) Detec-
tion is performed on full-scene images with multiple detected instances for each part category. (b)
Cropped part instances from instance segmentation are inputs to PVNet. Here, each column shows
different instances of each part class.

Figure 8: Visualization of pose estimation results obtained from PVNet on the inserted part, main
shell, and top shell. The detected 3D bounding boxes are shown in blue, while the estimated coor-
dinate axes are indicated by colored lines (red: x-axis, green: y-axis, blue: z-axis).

Figure 9: This image shows a failure case in our system. In this instance, Mask R-CNN incorrectly
classified the main part as a top part, feeding the crop to the PVNet model trained specifically for
the top part. As a result, the PVNet model produced an inaccurate instance mask and incorrect
keypoints, leading to a severely erroneous pose estimation. This misclassification and subsequent
processing by an inappropriate model resulted in significant errors throughout the pipeline, as illus-
trated by the poor alignment in the predicted and reprojected poses.
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(a)

(b)

(c)

Figure 10: This figure illustrates a robot grasping detected parts. In (a), Mask R-CNN detects and
segments four instances of the inserted part. In (b), one of these instances is processed by PVNet,
which performs semantic segmentation and predicts keypoints, using this information to calculate
the 6D pose. Finally, (c) shows the robot successfully grasping the part based on the predicted pose.

5 Conclusion

This work presented a vision-based system for pose estimation of sub-centimeter industrial parts.
This implementation of PVNet requires prior information from object instance detection and seg-
mentation which is out of scope of the original PVNet implementation. An additional refinement
strategy was also proposed to improve pose estimation accuracy. This approach can be applied
not only to USB Type-C components, but also to other small-scale, tight-contact-tolerance indus-
trial objects such as screws, bolts, and other connectors. Future work will focus on integrating this
sub-centimeter pose estimation pipeline into a complete assembly line of components.
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